首页|基于MF-SAE-SSA-KELM油浸式变压器故障诊断方法

基于MF-SAE-SSA-KELM油浸式变压器故障诊断方法

Fault Diagnosis Method for Oil Immersed Transformers Based on MF-SAE-SSA-KELM

扫码查看
传统油浸式变压器溶解气体分析故障诊断方法存在故障诊断速度慢的问题,提出一种多尺度融合堆叠自编码器(Multiscale Fusion Stacked Auto-encoder,MF-SAE)的油浸式变压器故障诊断的方法.首先获取油浸式变压器高压套管红外检测图谱,后将该图谱裁剪并处理为灰度图,将这些灰度图展平为一维特征向量后输入SAE,通过设置不同隐含层个数获取自编码器的编码部分从数据中提取特征.这些特征累加便得到不同尺度隐含层特征.之后将这些特征输入麻雀算法优化的核极限学习机分类模型进行故障诊断.算例分析表明,所提故障诊断方法有较高的故障诊断准确率.
The traditional fault diagnosis method of dissolved gas analysis for oil immersed transformers has the problem of slow fault diagnosis speed.This paper proposes a multi-scale fusion stacked Auto-encoder fault diagnosis method for oil immersed transformers.First,obtain the infrared detection atlas of oil immersed transformer high-voltage bushing,then cut and process the atlas into grayscale images,flatten these grayscale images into one-dimensional feature vectors,and input them into SAE,and extract features from the data by setting the number of different hidden layers to obtain the cod-ing part taken from the encoder.These features are accumulated to obtain hidden layer features at different scales.Then these features are input into the kernel extreme learning machine classification model optimized by the sparrow algorithm for fault diagnosis.The fault diagnosis method proposed in this paper has a high accuracy in fault diagnosis.

oil immersed transformerMF-SAEsparrow algorithmkernel extreme learning machinefault diagnosis

黄旭、许冬云

展开 >

国网武威供电公司,甘肃 武威 733000

油浸式变压器 MF-SAE 麻雀算法 核极限学习机 故障诊断

2024

工业控制计算机
中国计算机学会工业控制计算机专业委员会 江苏省计算技术研究所有限责任公司

工业控制计算机

影响因子:0.258
ISSN:1001-182X
年,卷(期):2024.37(10)