首页|基于距离选通图像的目标检测方法研究

基于距离选通图像的目标检测方法研究

扫码查看
由于距离选通图像缺少颜色特征信息导致检测率低、距离信息特征提取能力较弱等问题,因此,提出了一种基于改进YOLOv8s网络的距离选通图像检测方法.首先,提出自适应选通特征融合模块,对距离选通图像和其深度信息进行特征级融合,获取高级语义信息;其次,采用基于多尺度的深度可分离卷积模块构成的空间注意力模块,对每个特征层进行加权运算,以获得更多的关键特征;最后,改进了Neck部分PAN结构,提高了网络的目标检测能力.在距离选通图像数据集上进行了实验,实验结果表明该方法能有效地提升检测精度,并具有实际应用价值.
Research on Object Detection Method Based on Distance Range-Gated Images
Since the lack of color feature information in range-gated images leads to low detection rate and weak fea-ture extraction of distance information,a range-gated images detection method based on improved YOLOv8s network is proposed.Firstly,an adaptive range-gated feature fusion module is proposed to perform feature-level fusion of the range-gated image and its depth information to obtain high-level semantic information.Secondly,a spatial attention module based on the composition of multiscale depthwise separable convolutions modules is used to perform a weighting operation on each feature layer to obtain more key features.Finally,the Neck part of the PAN structure is improved to enhance the net-work's target detection ability.Experiments are carried out on the range-gated image dataset.

range-gated imagesdeep learningobject detection

田青、王述敏、温博

展开 >

北方工业大学信息学院,北京 100144

北京师范大学-香港浸会大学联合国际学院,广东 珠海 519087

距离选通图像 深度学习 目标检测

2024

工业控制计算机
中国计算机学会工业控制计算机专业委员会 江苏省计算技术研究所有限责任公司

工业控制计算机

影响因子:0.258
ISSN:1001-182X
年,卷(期):2024.37(12)