首页|引入动态聚焦损失的车辆载重状态CNN-LSTM识别模型

引入动态聚焦损失的车辆载重状态CNN-LSTM识别模型

扫码查看
为实时监测车辆的运行情况,研究引入动态聚焦损失的车辆载重状态CNN-LSTM识别模型.将选取的原始车辆特征数据及k步差分特征构成初步特征向量矩阵,利用卷积神经网络(CNN)和长短期记忆神经网络(LSTM)分别提取初步特征向量矩阵的局部特征和全局特征形成最终特征向量,进一步采用全连接网络将最终特征向量识别为装载、卸载、运行三种载重状态.模型训练中引入动态聚焦损失函数以平衡样本损失权重并加大决策边界的损失权重.实验结果表明:相较于支持向量机(SVM)、卷积神经网络和长短期记忆神经网络识别模型,CNN-LSTM识别模型的准确率分别提升了17.74%、3.97%和2.81%.
CNN-LSTM Recognition Model of Vehicle Load State with Dynamic Focusing Loss
In order to monitor the operation of the vehicle in real time,the CNN-LSTM recognition model of vehicle load state with dynamic focus loss is introduced.The selected original vehicle feature data and k-step differential features were used to form the preliminary feature vector matrix,and the convolutional neural network(CNN)and long short-term memory neural network(LSTM)were used to extract the local and global features of the preliminary feature vector matrix to form the final feature vector,and the fully connected network was further used to identify the final feature vector as loading,unload-ing and operation.The dynamic focused loss function is introduced into the model training to balance the sample loss weight and increase the loss weight of the decision boundary.Experimental results show that the accuracy of the CNN-LSTM recognition model is improved by 17.74%,3.97%and 2.81%respectively compared with the support vector machine(SVM),convolutional neural network and long short-term memory neural network recognition model.

vehicle loadconvolutional neural networkslong short-term memorytime series analysisdynamic focal loss function

徐慧琳、孙子文

展开 >

江南大学物联网工程学院,江苏 无锡 214122

物联网技术应用教育部工程研究中心,江苏 无锡 214122

车辆载重 卷积神经网络 长短期记忆网络 时间序列分析 动态聚焦损失函数

2024

工业控制计算机
中国计算机学会工业控制计算机专业委员会 江苏省计算技术研究所有限责任公司

工业控制计算机

影响因子:0.258
ISSN:1001-182X
年,卷(期):2024.37(12)