首页|未知海流干扰下基于滑模和强化学习的AUV环境最优定位控制

未知海流干扰下基于滑模和强化学习的AUV环境最优定位控制

扫码查看
自主水下航行器(AUV)是海洋探索和开发的重要工具之一.当AUV执行海洋任务时,由于其本体水动力参数的不确定性和未知海流、内波等外在因素的干扰,AUV的精确定位控制具有很大的挑战性.针对欠驱动AUV环境最优艏向定位控制问题,提出了一种基于强化学习补偿的滑模控制方法.首先,利用固定坐标系与AUV体坐标系间的转移关系,建立了考虑海流流速作用的三自由度欠驱动AUV数学模型.其次,根据环境最优艏向控制原理,设计了AUV的位置滑模控制器和姿态滑模控制器.为了克服AUV模型存在的不确定性和海流流速不确定性,采用深度确定性策略梯度(DDPG)算法设计了强化学习神经网络,对上述两种不确定性在滑模控制中造成的严重干扰进行自适应估计补偿.最后,在海流情况下进行模拟仿真,结果表明,所提出的方法能有效实现AUV环境最优定位控制,并对外界扰动具有良好的鲁棒性,精度明显优于经典滑模控制.
Weather Optimal Position Control for AUV in Presence of Unknown Ocean Currents Based on Sliding Mode and Reinforcement Learning
A sliding mode control method based on reinforcement learning compensation is proposed for the environ-mental optimal heading positioning control of under actuated AUVs.Firstly,using the relationship between the fixed coordi-nate system and the on-board coordinate system,establish a three degree of freedom model of under actuated AUVs with consideration of the role of ocean current velocity.Secondly,based on the principle of weather optimal heading control(WOHC),the sliding model position controller and attitude controller of the AUV are designed separately.Thirdly,in order to overcome the uncertainty of AUV hydrodynamic model and ocean current,a reinforcement learning neural network was de-signed using the deep deterministic policy gradient(DDPG)algorithm to adaptive estimate and compensate for the serious interference caused by the above two uncertainties in sliding mode control.Finally,simulation is conducted under ocean current conditions,and the results show that the proposed method can effectively achieve AUV WOHC with much better ro-bustness against external disturbances and much higher accuracy compared with the classic sliding mode control.

AUVsliding model controlreinforcement learningweather optimal controlocean current interference

丁朗、田玉平

展开 >

杭州电子科技大学自动化学院,浙江 杭州 310018

自主水下航行器 滑模控制 强化学习 环境最优控制 海流干扰

2024

工业控制计算机
中国计算机学会工业控制计算机专业委员会 江苏省计算技术研究所有限责任公司

工业控制计算机

影响因子:0.258
ISSN:1001-182X
年,卷(期):2024.37(12)