首页|黄河源区玛曲土壤冻融过程中地表水热交换特征分析

黄河源区玛曲土壤冻融过程中地表水热交换特征分析

扫码查看
土壤冻融过程显著影响地表含水量和能量收支变化.利用玛曲2017年8月至2018年7月的土壤温度/湿度、涡动观测资料以及公用陆面模式(Community Land Model,CLM)最新版本CLM5.0的模拟资料,其中冻结过程阶段的辐射和能量通量使用模式模拟的数据,通过分析土壤冻融过程中土壤温湿度、地表能量平衡各分量的时间演变特征,探讨冻融过程中地表水热交换的特征.数据分析表明:(1)土壤冻融过程包括冻结过程、完全冻结、消融过程及完全消融四个阶段,各阶段中的土壤温度/湿度、辐射和能量通量存在明显的日变化,在冻结过程和消融过程阶段,土壤湿度随土壤温度变化显示出明显的日冻融循环.(2)冻融过程通过影响表层土壤水分影响地表辐射收支和能量分配.冻融过程中土壤中的水相变为冰,改变下垫面性质影响地表辐射收支.土壤中的液态水通过相变影响地表潜热通量,完全消融(冻结)阶段,地气之间能量交换以潜热(感热)通量为主.相比于以潜热通量为主的冻结过程阶段,消融过程阶段净辐射通量逐渐增大,地气之间能量交换主要受感热通量影响.土壤中水分的昼融夜冻导致频繁的潜热通量释放影响地表热通量.土壤热通量在冻结过程(G0=-9.1 W·m-2)和消融过程阶段(G0=3.4W·m-2)绝对值大于完全消融阶段(G0=1.2W·m-2),土壤日冻融循环加强地表热通量交换.(3)能量闭合率为感热、潜热通量之和与净辐射通量、土壤热通量之差的比值.冻结过程、完全冻结、消融过程和完全消融阶段平均能量闭合率为1.44、1.56、0.99和0.81,消融过程和完全消融过程能量闭合率更趋近于1.土壤中存在日冻融循环时,冻结过程阶段土壤中的水冻结释放热量,高估土壤热通量从而高估能量闭合率,消融过程阶段土壤中的冰融化吸收热量,低估土壤热通量从而低估能量闭合率,影响地表能量收支平衡.
Characteristics of Surface Water and Heat Exchange during Soil Freezing And Thawing of Maqu Station in the Source Area of the Yellow River

张戈、赖欣、刘康

展开 >

成都信息工程大学大气科学学院/高原大气与环境四川省重点实验室/气候与环境变化联合实验室/成都平原城市气象与环境四川省野外科学观测研究站,四川成都 610225

中国民用航空飞行学院遂宁分院,四川遂宁 629000

土壤冻融 能量通量 水热交换 数值模拟

第二次青藏高原综合科学考察研究项目国家自然科学基金国家自然科学基金国家自然科学基金国家自然科学基金

2019QZKK010542075081419713084207501941905008

2023

高原气象
中国科学院寒区旱区环境与工程研究所

高原气象

CSTPCDCSCD北大核心
影响因子:2.193
ISSN:1000-0534
年,卷(期):2023.42(3)
  • 2
  • 25