首页|融合相似预报方法在陇东南短期强降水预报中的应用

融合相似预报方法在陇东南短期强降水预报中的应用

扫码查看
基于逐步过滤相似法和自组织映射(SOM)神经网络方法,提出了一种融合相似预报方法.利用ECMWF模式预报产品、ERA5再分析资料和地面气象台站观测数据,使用该方法对2021-2022年陇东南地区开展了时效为72 h的强降水预报试验,并对预报效果进行了检验.结果表明:(1)融合相似预报方法的TS评分处于4.5%~9.1%之间,与ECMWF模式预报结果相比表现出一定的优势.随着预报时效的增长,强降水预报的TS评分呈现减小的趋势,其在08:00(北京时,下同)起报的TS评分相对较高.(2)相比于单独使用逐步过滤相似预报,融合相似预报方法的准确性有所提升,并能在一定程度上降低空报率.其中08:00起报和20:00起报的TS评分提高了 1.31%和0.63%,而FAR同时下降了 2.39%和1.25%.
Application of Fusing Analog Method in Short-term Heavy Precipitation Forecast in Southeastern Gansu
Based on similar forecast method with step-by-step filter and Self-organizing map(SOM)neural net-work,a fusing analog forecast method is proposed.Using ECMWF model forecast products,ERA5 reanalysis data and station data,this method is used to carry out a 72-hour forecast of heavy precipitation in southeastern Gansu from 2021 to 2022,and the forecast effect is tested.The results show that the TS score of the fusing ana-log forecast method ranges from 4.5%to 9.1%,demonstrating a certain advantage compared to the forecast re-sults of the ECMWF model.As the forecast lead time increases,the TS score of the heavy precipitation forecast shows a decreasing trend,with relatively higher TS scores forecasted at 08:00.Compared with the similar fore-cast method with step-by-step filter alone,the accuracy of the fusing analog forecast method is improved,and it can alleviate the problem of high false alarm rate to a certain extent.Specifically,the TS scores forecasted at 08:00 and 20:00 are increased by 1.31%and 0.63%,while the FAR is decreased by 2.39%and 1.25%.

heavy precipitationshort-term forecastsimilar forecastsimilar forecast method with step-by-step filterself-organizing map(SOM)

黄晓远、李旭、杜梦莹、叶培龙、李艳

展开 >

兰州大学大气科学学院,甘肃兰州 730000

兰州中心气象台,甘肃兰州 730020

强降水 短期预报 相似预报 逐步过滤相似 自组织映射(SOM)

2025

高原气象
中国科学院寒区旱区环境与工程研究所

高原气象

北大核心
影响因子:2.193
ISSN:1000-0534
年,卷(期):2025.44(1)