首页|融合XGBoost的企业财务造假识别模型构建

融合XGBoost的企业财务造假识别模型构建

扫码查看
基于XGBoost算法优化了财务造假识别模型,进行特征提取以更好地进行分析,最终融入性能评价体系对财务造假模型进行评分,旨在提高财务造假的识别准确性.研究结果显示,优化后的SVM模型在财务造假识别方面的曲线下面积为0.77,随机森林算法的曲线下面积达到0.83,而采用XGBoost曲线面积为0.85,XGBoost模型在财务造假识别方面取得了较高的准确性,优化后的Xscore模型在财务造假模型识别中精确度更高.因此,基于XGBoost的企业财务造假识别模型具有重要的应用价值.
Construction of a Fusion Model for Corporate Financial Fraud Detection with XGBoost
This study builds a fused model based on the XGBoost algorithm and explores parameter settings,performance evaluation,and optimization strategies to enhance the accuracy of financial fraud detection.The results demonstrate that the optimized SVM model achieves an AUC area of 0.77,while the random forest algorithm achieves 0.83.In contrast,the proposed XGBoost model achieves an AUC area of 0.85,indicating high accuracy in detecting financial fraud,with an AUC area close to the optimal range.Compared to traditional and deep learning algorithms,XGBoost exhibits significant advantages in both model performance and efficiency.Therefore,the proposed XGBoost-based corporate financial fraud detection model holds significant value for practical applications.Future research can further explore the application of XGBoost algorithm in other domains.

XGBoostFinancial fraudDetection accuracyPerformance optimizationModel design

程梅娟

展开 >

安徽粮食工程职业学院工商管理系,安徽合肥 230000

XGBoost 财务造假 识别准确率 性能优化 模型设计

2022年安徽省科学研究重点项目2022年安徽省职成教学会教学研究重点项目

2022AH053107Azcj2022018

2024

贵阳学院学报(自然科学版)
贵阳学院

贵阳学院学报(自然科学版)

影响因子:0.294
ISSN:1673-6125
年,卷(期):2024.19(1)
  • 8