首页|基于PSO优化双子支持向量机的电商经济预测研究

基于PSO优化双子支持向量机的电商经济预测研究

扫码查看
为提高电商经济预测性能,解决因时序复杂、特征量多及用户需求复杂等带来的预测精度偏低的问题,采用双子支持向量机进行电商经济预测.首先,获取电商经济数据特征,接着构建双子支持向量机(TWSVM)的电商经济预测模型,提取TWSVM的正则因子等参数,随机初始化多组参数,并构建多个粒子.然后借助粒子群优化(PSO)算法搜索最优TWSVM参数,以生成适合电商经济预测的最佳TWSVM模型,通过PSO优化获得最优TWSVM参数.最后采用最佳TWSVM模型进行电商经济预测,并对预测结果进行评价.在实例仿真中,以电商经济销售金额和增长率两个指标为主,PSO优化的 TWSVM 算法的预测准确度均高于90%.
Research on E-commerce Economic Forecasting Based on PSO Optimized Twin Support Vector Machine
In order to improve the performance of e-commerce economic forecasting and solve the problem of low fore-casting accuracy caused by complex time series,many features and complex user needs,Gemini support vector machine was used to forecast e-commerce economy.Firstly,the economic characters of e-commerce were obtained and then the economic prediction model of Twin Support Vector Machines(TWSVM)was established,and the parameters such as the canonical factor of TWSVM were extracted.Several groups of parameters were randomly initialized to build a particle swarm.Particle swarm optimization(PSO)algorithm was used to search the best parameters of TWSVM to generate the best TWSVM model suitable for e-commerce economic prediction.Through PSO optimization,the optimal TWSVM pa-rameters were obtained.Finally,the best TWSVM model was used to predict e-commerce.In the example simulation,the prediction accuracy of TWSVM algorithm optimized by PSO was higher than 90%,mainly based on the economic sales amount and growth rate of e-commerce.

E-commerce economyTwin support vector machineParticle swarm optimizationPerplanar

巢瑞云、刘源

展开 >

广州南洋理工职业学院 经济管理学院,广东 广州 510900

桂林医学院 智能医学与生物技术学院,广西 桂林 541199

电商经济 双子支持向量机 粒子群优化 超平面

国家自然科学基金桂林医学院博士启动基金2022年广东省社科规划项目

6147403231304019011GD22XYJ28

2024

贵阳学院学报(自然科学版)
贵阳学院

贵阳学院学报(自然科学版)

影响因子:0.294
ISSN:1673-6125
年,卷(期):2024.19(2)