首页|基于融合模型的产品价格预测方法研究

基于融合模型的产品价格预测方法研究

扫码查看
产品价格预测有利于产品生产企业规避风险、调整生产决策,因此在生产领域进行价格预测是必要的工作.为提高价格预测的精度,将随机森林模型、岭回归模型和极端梯度提升模型通过Adaboost算法有机融合在一起,构建了价格预测的融合模型.该模型将三个单一模型的预测结果进行加权平均,以得到更准确的预测结果.实验结果显示,该模型较为真实地反映了产品价格的变动趋势,其R2 值为0.998,说明模型具有较好的拟合性.该模型的均方根误差和平均绝对误差分别为94.968 和44.2,均小于其他对比模型.可见模型综合了单一模型的优势,对产品价格的预测误差较小,可以更准确地预测产品价格,可以为企业的产品再生产决策提供理论支持.
Research on product price forecasting method based on fusion model
Product price forecasting is beneficial to product manufacturers to avoid risks and adjust production decisions,so it is necessary to do price forecasting in the production field.In order to improve the accuracy of price prediction,the random forest model,ridge regression model and extreme gradient lifting model are organically integrated by Adaboost al-gorithm,and a fusion model of price prediction is constructed.The model weights the forecast results of three single models to get a more accurate forecast.The experimental results show that the model can truly reflect the changing trend of product price,and its R2 value is 0.998,indicating that the model has a good fit.The root-mean-square error and mean absolute error of this model are 94.968 and 44.2,respectively,which are smaller than other comparison models.It can be seen that the model synthesizes the advantages of a single model,and the prediction error of product price is small,which can predict product price more accurately,and can provide theoretical support for the product reproduction decision of enterprises.

RRARFAXGBFusion modelPrice forecast

曾骁昳

展开 >

福州外语外贸学院 财务与会计学院,福建 福州 350001

RRA RFA XGB 融合模型 价格预测

2024

贵阳学院学报(自然科学版)
贵阳学院

贵阳学院学报(自然科学版)

影响因子:0.294
ISSN:1673-6125
年,卷(期):2024.19(2)