首页|基于蚁群算法的城市轨道交通路径规划在旅游管理中的应用研究

基于蚁群算法的城市轨道交通路径规划在旅游管理中的应用研究

扫码查看
针对乘客在城市轨道交通中的路径选择问题,提出了一种基于蚁群算法的城市轨道交通路径规划模型.首先,对城市轨道交通网络进行简化.然后,对各个乘车时的影响因素进行分析,通过改进蚁群算法适配此次研究进行建模.实验结果表示,当迭代次数较低时,蚁群算法的准确率较Yen's算法的准确率较低;随着迭代次数的增加,蚁群算法的准确率超过Yen's算法的准确率,且快速达到最好的性能.当蚁群算法模型迭代次数达到40 时,即达到最好的性能时,Yen's算法模型仍然未达到最好的性能.研究结果表明,此次提出的基于蚁群算法的城市轨道交通路径规划对城市交通管理水平有着一定的提升,可以为城市居民出行提供更加便利的选择.
Research on the Application of Urban Rail Transit Route Planning in Tourism Management Based on Ant colony optimization algorithms
This study proposes a Ant colony optimization algorithms based urban rail transit path planning model for the problem of passenger routing in urban rail transit.Firstly,simplify the urban rail transit network.Then,the influencing factors of each travel time are analyzed,and the modeling is carried out by improving the Ant colony optimization algo-rithms to adapt to this study.The experimental results show that when the number of iterations is low,the accuracy of Ant colony optimization algorithms is lower than that of Yen's algorithm.With the increase of the number of iterations,the ac-curacy of Ant colony optimization algorithms exceeds that of Yen's algorithm,and quickly achieves the best performance.When the number of iterations of the Ant colony optimization algorithms model reaches 40,it achieves the best perform-ance,while the Yen's algorithm model still does not achieve the best performance.The research results show that the pro-posed Ant colony optimization algorithms based urban rail transit path planning has improved the urban traffic manage-ment level to a certain extent,and can provide more convenient choices for urban residents to travel.

Path planningAnt colonyRail transitYen's algorithmComfort

李雪峰

展开 >

合肥科技职业学院,安徽 合肥 231201

路径规划 蚁群算法 轨道交通 Yen's算法 舒适度

安徽省教育厅自然科学重点项目

KJ2020A1188

2024

贵阳学院学报(自然科学版)
贵阳学院

贵阳学院学报(自然科学版)

影响因子:0.294
ISSN:1673-6125
年,卷(期):2024.19(2)