首页|基于神经网络的基层智慧型融媒体系统传播能力预测方法

基于神经网络的基层智慧型融媒体系统传播能力预测方法

扫码查看
随着基层智慧型融媒体系统在各地的应用越来越广泛,为实现系统长期传播能力的预测,设计基于神经网络的基层智慧型融媒体系统传播能力预测方法.基于改进数据集结构设计高效用数据挖掘算法,实施基层智慧型融媒体系统结构、时间、文本、用户信息的挖掘.对于挖掘信息,设计异常事件检测模型对其实施数据异常事件检测,使用差分综合移动平均自回归模型实施单点噪声的修复.构建一种基于上下文依赖的动态图注意网络作为基层智慧型融媒体系统传播能力预测模型,由建模传播动态图模块、时—空依赖学习模块与预测模块构成,其输入为处理后的信息,输出信息为基层智慧型融媒体系统传播规模预测增量.实验结果表明,该方法预测用户列表精度整体较高,最高达到98.95%,预测用户列表召回率整体较高,最高达到97.24%.
Prediction Method for Communication Capability of Grassroots Intelligent Integrated Media Systems Based on Neural Networks
with the increasingly widespread application of grassroots smart integrated media systems in various regions,in order to achieve the prediction of the system's long-term communication ability,a neural network-based method for predicting the communication ability of grassroots smart integrated media systems is designed.Design efficient data min-ing algorithms based on improved dataset structure,and implement the mining of grassroots intelligent integrated media system structure,time,text,and user information.For mining information,design an anomaly event detection model to implement data anomaly event detection,and use a differential comprehensive moving average autoregressive model to re-pair single point noise.Construct a context dependent dynamic graph attention network as a grassroots intelligent inte-grated media system propagation ability prediction model,consisting of a modeling propagation dynamic graph module,a temporal spatial dependency learning module,and a prediction module.The input is processed information,and the out-put information is the prediction increment of the propagation scale of the basic intelligent integrated media system.The experimental results show that the overall accuracy of this method in predicting user lists is high,reaching a maximum of 98.95%,and the overall recall rate of predicting user lists is high,reaching a maximum of 97.24%.

Grassroots intelligent integrated media systemEnd-to-end neural networksSingle point noise restora-tionPrediction of communication ability

刘滔

展开 >

安徽新闻出版职业技术学院 新闻传播系,安徽 合肥 230601

基层智慧型融媒体系统 端到端神经网络 单点噪声修复 传播能力预测

安徽省高校自然科学研究重点项目

KJ2021A1555

2024

贵阳学院学报(自然科学版)
贵阳学院

贵阳学院学报(自然科学版)

影响因子:0.294
ISSN:1673-6125
年,卷(期):2024.19(2)