首页|基于多源数据融合和深度学习的智慧校园分析模型

基于多源数据融合和深度学习的智慧校园分析模型

扫码查看
为解决传统校园管理中数据分散、信息孤岛等问题,提出一种基于"多源数据融合+深度学习"的智慧校园分析模型.利用多源数据融合技术,整合不同来源的数据,通过物联网设备、传感器、社交媒体等方面,提供更全面、准确的校园信息,通过深度学习技术实现对学校运营、学生学习、教学效果等方面的综合分析.模型的核心特点包括数据融合、深度学习模型的应用以及对学校各层面智能决策的支持,利用卷积神经网络(CNN)中的ResNet(Residual Network)模型,通过整合来自学生信息管理、图书馆管理、人脸识别等多个系统的数据,进行全面分析,引入了残差学习,通过跳过连接(skip connection)解决了深度网络训练中的梯度消失和梯度爆炸问题.详细介绍了数据融合、深度学习算法应用以及智慧校园分析模型的设计,并通过实际案例分析验证了其有效性,准确率达到了 95%.该模型旨在提高校园管理效率、优化资源配置,并提升教学和学生服务质量.
A Smart Campus Analysis Model Based on Multi source Data Fusion and Deep Learning
In order to solve the problems of data dispersion and information isolation in traditional campus management,this paper proposes a smart campus analysis model based on multi-source data fusion and deep learning.By utilizing multi-source data fusion technology and integrating data from different sources,more comprehensive and accurate cam-pus information is provided through IoT devices,sensors,social media,and other aspects.Through deep learning tech-nology,comprehensive analysis of school operations,student learning,teaching effectiveness,and other aspects is a-chieved.The core characteristics of the model include data fusion,application of deep learning models,and support for intelligent decision-making at all levels of the school.By utilizing the ResNet(Residual Network)model in Convolu-tional Neural Networks(CNN)and integrating data from multiple systems such as student information management,li-brary management,and facial recognition,a comprehensive analysis was conducted.Residual learning was introduced to solve the problems of vanishing and exploding gradients in deep network training through skip connections.This model aims to improve campus management efficiency,optimize resource allocation,and enhance the quality of teaching and student services.The paper provides a detailed introduction to the application of data fusion,deep learning algorithms,and the design of a smart campus analysis model.Its effectiveness has been verified through practical case analysis,with an accuracy rate of 95%.

Smart campusUniversity managementDeep learning algorithmsMulti source data fusionManagement efficiency

崔彦君、龙君芳

展开 >

广东培正学院 数据科学与计算机学院,广东 广州 510830

智慧校园 高校管理 深度学习算法 多源数据融合 管理效率

2024

贵阳学院学报(自然科学版)
贵阳学院

贵阳学院学报(自然科学版)

影响因子:0.294
ISSN:1673-6125
年,卷(期):2024.19(3)