首页|分布式计算中基于机器学习聚类的人力资源管理推荐

分布式计算中基于机器学习聚类的人力资源管理推荐

扫码查看
由于受到特征维度及数据规模的影响,人力资源精准推荐难度提升.为了提高人力资源管理平台的自适应推荐精准度,采用机器学习聚类推荐策略,将AP聚类算法应用于大规模人力资源推荐,并借助于Storm计算框架提高推荐效率.首先,根据人力资源平台的用户行为记录进行特征提取并初始化,并借助PCA算法进行特征提取,构建求职者和岗位的评分函数.然后,采用AP聚类算法对求职者—岗位特征进行聚类分析,根据聚类结果获得候选岗位推荐序列.AP聚类的所有过程均在Storm分布式节点中完成.通过对 4 家大型网络招聘平台的仿真分析,分别从不同推荐序列、不同聚类数目及不同特征数的角度下展开人力资源推荐性能分析.结果表明,AP聚类在4 家平台的人力资源推荐中获得较高的Recall和F1 性能,而分布式计算则有效提升了推荐加速比.
Human Resource Management Recommendation Based on Machine Learning Clustering in Distributed Computing
Due to the influence of feature dimension and data scale,it is more difficult to recommend human resources accurately.In order to improve the self-adaptive recommendation accuracy of human resources management platform,machine learning clustering recommendation strategy was adopted,and AP clustering algorithm was applied to large-scale human resources recommendation,and the recommendation efficiency was improved with the help of Storm compu-ting framework.Firstly,feature extraction and initialization were carried out according to the user behavior records of the human resources platform,and feature extraction was carried out with the help of PCA algorithm,then the scoring func-tion of job seekers and positions was constructed,and then the characteristics of job seekers and positions were clustered by AP clustering algorithm,and the candidate position recommendation sequence was obtained according to the cluste-ring results.All processes of AP clustering were completed in Storm distributed nodes.Through the simulation analysis of four large-scale online recruitment platforms,the performance of human resource recommendation was analyzed from the perspectives of different recommendation sequences,different cluster numbers and different feature numbers.The empirical study shows that AP clustering achieves higher Recall and F1 performance in human resource recommendation of four platforms,while distributed computing effectively improves the recommendation acceleration ratio.

Human resource recommendationMachine learningDistributed computingAP clusteringStorm compu-ting framework

余先玲、王成成、彭玲

展开 >

广州华南商贸职业学院 经济管理学院,广东 广州 510650

广东科技学院 管理学院,广东 东莞 523000

人力资源推荐 机器学习 分布式计算 AP聚类 Storm计算框架

2024

贵阳学院学报(自然科学版)
贵阳学院

贵阳学院学报(自然科学版)

影响因子:0.294
ISSN:1673-6125
年,卷(期):2024.19(3)