首页|基于反向传播神经网络和支持向量机融合模型的农产品价格预测技术

基于反向传播神经网络和支持向量机融合模型的农产品价格预测技术

扫码查看
在当今农业科技快速发展的过程中,农产品种植的种类和规划方式也越来越丰富,不同的农产品规划能带来不同的农作物种植收益.为了提高农产品种植规划的质量,提出了一种基于融合模型的方法.过程中建立包含三层结构的反向传播神经网络,使用粒子群算法通过逐渐逼近的方式进行数据寻优,使用支持向量机回归技术对短时间农产品价格进行预测.实验结果表明,研究方法在对蔬菜进行预测时,在输入数据条数为200 条时的计算时间为153 ms;在产品单价预测结果中,研究方法在对水果进行预测时的预测结果误差保持在0.003 元每千克以内.研究方法能够有效完成农产品的单价预测,且具有良好的效率.
Agricultural Product Price Prediction Technology Based on Backpropagation Neural Network and Support Vector Machine Fusion Model
In the rapid development of agricultural technology today,the types and planning methods of agricultural product planting are becoming increasingly diverse.Different agricultural product planning can bring different crop plant-ing benefits.In order to improve the quality of agricultural product planting planning,a fusion model-based method has been proposed.During the process,a backpropagation neural network with a three-layer structure is established,and particle swarm optimization algorithm is used to gradually approximate the data for optimization.Support vector machine regression technology is used to predict short-term agricultural product prices.The experimental results show that the calculation time for predicting vegetables using the research method is 153ms when the input data is 200 pieces;In the prediction of product unit price,the research method maintains an error of within 0.003 yuan per kilogram when predic-ting fruits.The research method can effectively predict the unit price of agricultural products and has good efficiency.

Agricultural productsPrice forecastBackpropagation neural networkSupport Vector Machine

王艺

展开 >

安徽粮食工程职业学院 工商管理学院,安徽 合肥 230011

农产品 价格预测 反向传播神经网络 支持向量机

2024

贵阳学院学报(自然科学版)
贵阳学院

贵阳学院学报(自然科学版)

影响因子:0.294
ISSN:1673-6125
年,卷(期):2024.19(3)