首页|基于随机森林算法建立肾结石腔内手术后并发尿脓毒血症预警模型的价值

基于随机森林算法建立肾结石腔内手术后并发尿脓毒血症预警模型的价值

扫码查看
目的 探讨基于随机森林算法建立肾结石腔内手术后并发尿脓毒血症的预警模型的价值.方法 以行腔内手术治疗的362例肾结石患者为研究对象,根据患者术后是否发生尿脓毒血症将其分为尿脓毒血症组和非尿脓毒血症组,收集患者的临床资料,采用多因素logistic回归筛选影响患者术后并发尿脓毒血症的危险因素,运用R软件建立预测肾结石腔内手术患者术后并发尿脓毒血症的随机森林模型,并验证模型效能.结果 34例患者肾结石腔内手术后发生尿脓毒血症、发生率为9.39%;尿脓毒血症组和非尿脓毒血症组患者的年龄、性别、糖尿病、结石直径、结石数量、感染性结石、手术时间等资料比较,P<0.05;多因素logistic回归筛选结果显示,年龄、性别、糖尿病、结石直径、结石数量、感染性结石、手术时间均为肾结石腔内手术患者术后发生尿脓毒血症的独立危险因素(P<0.05),随机森林模型对肾结石腔内手术后并发尿脓毒血症重要性预测的排序为手术时间、糖尿病、感染性结石、性别、结石直径、结石数量以及年龄,两种模型均具有较好的预测效能.结论 随机森林算法建立的风险预测模型对肾结石腔内手术后并发尿脓毒血症具有较好的预测效能.
Value of establishing a warning model for developing urosepsis after renal endoluminal surgery for renal stones based on random forest algorithm
Objective To investigate the value of establishing a warning model for developing urosepsis after endoluminal surgery for renal stones based on random forest algorithm.Methods A total of 362 patients with renal stone who underwent endoluminal surgery were selected as research subjects.According to whether the patients developed urosepsis after surgery,they were divided into urosepsis and non-urosepsis groups.Clinical data of the patients were collected.Multivariate logistic regression was used to screen for risk factors affecting postoperative urosepsis.R software was used to establish a random forest model for predicting postoperative urosepsis in patients who underwent renal endoluminal surgery,and the efficacy of the model was verified.Results There were 34 patients who developed urosepsis after renal endoluminal surgery,with an incidence rate of 9.39%.The differences in age,gender,diabetes,stone diameter,number of stones,infectious stones and operation time were significant different between urosepsis and non-urosepsis groups(P<0.05).Multivariate logistic regression results showed that age,gender,diabetes,stone diameter,number of stones,infectious stones and operation time were independent risk factors for urosepsis in patients with renal stones after renal endoluminal surgery(P<0.05).The random forest model revealed that the order of the importance in predicting urosepsis after renal endoluminal surgery was the operation time,diabetes,infectious calculi,gender,stone diameter,number of stones and age.Both models had good predictive performance.Conclusion The risk prediction model established by the random forest algorithm has good predictive performance for urosepsis after endoluminal surgery.

random forestrenal stonesendoluminal surgeryurosepsismultivariateearly warning modelpredictive efficacy

王旋、徐倩、曾津、邱洪波、靳国栋、窦海荣、孟鑫林、张琳娟、郭菲

展开 >

西安交通大学第一附属医院麻醉手术部,陕西西安 710061

陕西省人民医院麻醉手术二部,陕西西安 710068

西安交通大学第一附属医院泌尿外科,陕西西安 710061

随机森林 肾结石 腔内手术 尿脓毒血症 多因素 预警模型 预测效能

陕西省重点研发计划项目

2017KW-050

2024

贵州医科大学学报
贵阳医学院

贵州医科大学学报

CSTPCD
影响因子:0.827
ISSN:2096-8388
年,卷(期):2024.49(6)
  • 16