首页|一种DeepLabv3+结构改进的高分遥感影像红树林边界识别方法

一种DeepLabv3+结构改进的高分遥感影像红树林边界识别方法

扫码查看
针对红树林自动监测与保护的迫切需求,文章提出一种DeepLabv3+改进模型的高分辨率遥感影像红树林的识别方案.改进方案主要包括在DeepLabv3+的ASPP(Atrous Spatial Pyramid Pooling)结构中,引入深度可分离卷积和SE(Squeeze and Excitation)注意力机制,以及在解码端加入CBAM(Convolutional Block Attention Module)注意力机制和多尺度融合技术,以提高模型对红树林关键特征的捕捉和表征能力,从而减少漏检和误检现象.经过严格的精度评价,改进后的DeepLabv3+模型在总体精度上达到了 99.60%,在召回率、红树林类交并比(Mangrove-IoU)和类 Fl-score 上也分别达 96.05%、95.31%和 97.60%.与原始 DeepLabv3+、HRNet 和PSPNet模型相比,改进模型在所有主要评价指标上表现更优,红树林的识别准确性和边界提取能力明显提升.应用分析也进一步验证了模型的泛化能力和应用潜力.研究成果可优化红树林的实时监测技术.
A DeepLabv3+architecture improved method for identifying mangrove boundaries in high-resolution remote sensing images
In this study,aiming at the monitoring and protection of mangroves,an improved scheme based on the DeepLabv3+model is proposed to enhance the recognition accuracy of mangroves in high-resolution remote sensing images.The improvement mainly involves introducing depthwise sepa-rable convolution and SE(Squeeze and Excitation)attention mechanism into the ASPP(Atrous Spa-tial Pyramid Pooling)structure of DeepLabv3+,as well as incorporating a CBAM(Convolutional Block Attention Module)attention mechanism and multi-scale fusion technique into the decoding end.These innovative structural designs strengthen the model's ability to capture and represent key features of mangroves,thereby reducing missed detections and false positives.After rigorous accuracy evalua-tion,the improved DeepLabv3+model achieved an overall accuracy of 99.60%,with recall,man-grove Intersection over Union(Mangrove-IoU),and mangrove Fl-score reaching 96.05%,95.31%,and 97.60%,respectively.Compared with the original DeepLabv3+model and other popular models such as HRNet and PSPNet,the improved model demonstrated superior performance in all major eval-uation metrics,significantly improving the recognition accuracy and boundary extraction capability of mangroves.Furthermore,the model's generalization ability and application potential were also verified in the application analysis.The application analysis further verified the generalization ability and ap-plication potential of the model.The research results can optimize the real-time monitoring technology of mangroves.

mangrove boundary identificationDeepLabv3+attention mechanismmulti scale feature fusionsemantic segmentationhigh resolution imaging

吴耀炜、龚建周、陈智勇、袁海威、林颖怡

展开 >

广州大学地理科学与遥感学院,广东广州 510006

红树林边界识别 DeepLabv3+ 注意力机制 多尺度特征融合 语义分割 高分遥感影像

国家自然科学基金面上项目

42071123

2024

广州大学学报(自然科学版)
广州大学

广州大学学报(自然科学版)

影响因子:0.293
ISSN:1671-4229
年,卷(期):2024.23(3)