首页|随机多路径车辆路径问题及其算法

随机多路径车辆路径问题及其算法

扫码查看
为了更加契合现实的城市配送运作环境,本文对经典的车辆路径问题进行了新的拓展研究,考虑了任意两个物流节点之间存在多条路径且每条路径的通行成本不确定的情况,建立了随机多路径车辆路径问题(sto-chastic multi-path vehicle routing problem,SMP-VRP)模型,并针对所研究的问题设计了具有较高求解效率的两阶段算法.算法的第一阶段,采用具有约束的K-means算法对客户进行分组,将SMP-VRP问题转化为随机多路径旅行商问题(stochastic multi-path traveling salesman problem,SMP-TSP);算法的第二阶段,将SMP-TSP问题先转化成等价的情景规划问题,再近似成确定型规划问题;通过对SMP-TSP问题的求解,进而得到SMP-VRP问题的解.算例测试表明,相较于采用贪心策略的配送组织方法,本文所提出的两阶段算法可以降低 7%左右的平均配送成本,并且表现出良好的稳定性,为物流配送车辆路径优化问题提供了新的研究思路,且具有较强的应用价值.
The Stochastic Multi-Path Vehicle Routing Problem and Its Algorithm
To better fit the realistic urban distribution operation environment,this article conducts a new extended study on the classic vehicle routing problem,considering the situation where there are multiple paths with uncertain travel costs between any two logistics nodes.A stochastic multi-path vehicle routing problem(SMP-VRP)model is established,and a two-stage algorithm with high solution efficiency is designed for the studied problem.In the first stage of the algorithm,a constrained K-means algorithm is used to group customers and convert the SMP-VRP problem to a stochastic multi-path traveling salesman problem(SMP-TSP).In the second stage of the algorithm,the SMP-TSP problem is firstly converted into an equivalent scenario planning problem,and then approximated into a deterministic planning problem;the solution of the SMP-TSP problem is used to obtain the solution of the SMP-VRP problem.Case studies show that compared with the delivery organization method using a greedy strategy,the two-stage algorithm proposed in this article can reduce the average delivery cost by around 7%and exhibits good stability.This algorithm provides a new research approach to the vehicle routing optimization in logistics delivery and has strong practical value.

urban distributionvehicle routing problemstochastic multipathtwo-stage algorithmK-means al-gorithm

徐鹏、卢翰林

展开 >

河海大学 土木与交通学院,江苏 南京 210098

城市配送 车辆路径问题 随机多路径 两阶段算法 K-means算法

江苏省交通运输科技项目

2022Y16-2

2024

贵州大学学报(自然科学版)
贵州大学

贵州大学学报(自然科学版)

CSTPCD
影响因子:0.396
ISSN:1000-5269
年,卷(期):2024.41(2)
  • 15