首页|一类禽流感传染病传播模型的动力学分析

一类禽流感传染病传播模型的动力学分析

扫码查看
以H7N9 型禽流感为例,根据其传播具有潜伏期,研究了一类人-禽相互作用的H7N9 型禽流感病毒的传播.针对此类传染病,构建了一类SI-SEIR型禽流感传染病传播的动力学模型,并利用该模型在人、畜环境中的多种病毒之间的相互作用,分析了无病平衡点和地方病平衡点的稳定性,对模型进行动力学分析,得到基本再生数R0.通过Lyapunov稳定性理论和LaSalle不变集原理,对模型的全局稳定性进行了分析,得出以下结论:当基本再生数R0 小于1 时,模型的无病平衡点全局渐近稳定;当基本再生数R0 大于1 时,模型的地方病平衡点全局渐近稳定.因此,在已经发生了禽流感疫情的地区,捕杀禽类和减少市场上禽类的流通等措施是杜绝此类传染病传播的关键.
Kinetic Analysis of a Transmission Model of a Group of Avian Influenza Infectious Diseases
In this paper,taking avian influenza H7N9 as an example,according to its incubation period,the transmission of H7N9 avian influenza virus with human-bird interaction is studied,and a kinetic model for the spread of SI-SEIR avian influenza is established.Then using the interaction among viruses in human,animal and environment,the stability of the disease free equilibrium and endemic equilibrium is analyzed,and the basic reproductive number R0 is obtained by kinetic analysis.Through the stability theory of Lyapunov and the principle of LaSalle invariant set,the global stability of the model is analyzed and the following conclusions are drawn:when R0 is less than 1,the disease free equilibrium is globally asymptotically stable;when R0 is greater than 1,the endemic equilibrium is globally asymptotically stable.Therefore,in areas where avian influenza outbreaks have already occurred,measures such as culling birds and reducing the circulation of birds in the market are key to stopping the spread of such infectious diseases.

kinetic modelkinetic analysisbasic regenerative numberglobal asymptotic stability

郭金生、薛梅

展开 >

河西学院 数学与统计学院,甘肃 张掖 734000

动力学模型 动力学分析 基本再生数 全局渐近稳定

大学生创新创业训练计划项目

S202210740148

2024

贵州大学学报(自然科学版)
贵州大学

贵州大学学报(自然科学版)

CSTPCD
影响因子:0.396
ISSN:1000-5269
年,卷(期):2024.41(3)
  • 7