首页|含剪切节理面岩质边坡滑裂面位置及稳定性研究

含剪切节理面岩质边坡滑裂面位置及稳定性研究

扫码查看
同向双平面滑动是存在单一地质断层面(剪切节理面)岩质边坡的常见破坏模式之一,但对该种类型的滑裂面计算方法并不充足.为了能够更加高效准确地寻找边坡的滑裂面位置,判断边坡的稳定性,基于极限平衡理论和非线性数学规划模型,假设滑体的滑动方式为同向双平面滑动,再假设目标函数为该岩质边坡的安全系数,运用MTALAB全局最优搜索法,计算含剪切节理面工程边坡在天然工况作用下的滑裂面位置及稳定性,并与极限分析法、强度折减法和毕肖普法进行对比分析.研究结果表明:基于极限平衡理论和非线性数学规划模型得出的滑裂面位置与安全系数基本一致,验证此类方法的可行性,为存在单一地质断层面岩质边坡的滑裂面计算和稳定性分析提供了新依据.
Study on the Location and Stability of Slip Fracture Surface of Rocky Slope with Shear Joint
Codirectional biplane sliding is one of the common failure modes of rock slopes with a single geological fault plane(shear joint face),but the calculation methods for this type of slip surface are insufficient.In order to find the position of the slip surface of the slope more efficiently and accurately,and judge the stability of the slope,based on the limit equilibrium theory and nonlinear mathematical programming model,assuming that the slider has fallen off and the shape is an uncertain quadrilateral slide,and then assuming that the objective function is the safety factor of the rock slope,the position and stability of the slip fracture surface of the engineering slope with shear joint surface under natural working conditions are calculated by using MTALAB's global optimal search method.Then the results are analyzed and compared with those ofthe strength reduction method and the Bishop rigid body equilibrium method.The results show that the position of the slip fracture surface based on the limit equilibrium theory and the nonlinear mathematical programming model is basically consistent with the safety factor,which verifies the feasibility of such a method,providing a new basis for the calculation and stability analysis of the slip fracture surface of rock slope with a single geological fault layer.

rock slopecalculation of slip surfacesafety factorlimit equilibrium methodnonlinear theoryoptimization principle

陈东宇、刘文连、眭素刚、许汉华

展开 >

昆明理工大学建筑工程学院,云南昆明 650500

中国有色金属工业昆明勘察设计研究院有限公司,云南昆明 650051

岩质边坡 滑裂面计算 安全系数 极限平衡法 非线性理论 最优化原理

国家自然科学基金资助项目国家自然科学基金资助项目昆明理工大学引进人才科研启动基金资助项目

1216201812262016KKSY201904006

2024

贵州大学学报(自然科学版)
贵州大学

贵州大学学报(自然科学版)

CSTPCD
影响因子:0.396
ISSN:1000-5269
年,卷(期):2024.41(3)
  • 18