首页|基于LZG-Net的机械手触觉识别和分类

基于LZG-Net的机械手触觉识别和分类

扫码查看
准确识别物体类别和触觉信号对于机械手实现软抓取控制至关重要.为此,提出了一种用于嵌入式设备的轻量级金字塔神经网络(LZG-Net)模型,用于处理机械手抓取物体时的振动信号.LZG-Net模型以Ghost 模块为基础,采取卷积核逐层递减的卷积策略.针对注意力机制SE模块在一些嵌入式设备上无法部署的问题进行改进,并通过知识蒸馏、算子优化和量化操作提高模型在嵌入式系统上的准确率.最后,搭建了嵌入式触觉识别系统,将LZG-Net模型部署至其中,对4 种不同特征的物体进行触觉识别.实验结果表明:该模型能够对物体类别及抓取状态进行准确分类,分类正确率达90.94%,其分类性能优于现有的经典轻量级神经网络.
Manipulator Tactile Recognition and Classification Based on LZG-Net
Accurate recognition of object categories and tactile signals is crucial for robotic hands to achieve soft grasp control.This paper proposes a lightweight pyramid neural network(LZG-Net)model for embedded devices,designed to process vibration signals during robotic hand grasping.The LZG-Net model is based on the Ghost module and adopts a convolutional strategy with progressively decreasing convolutional kernels.It addresses the issue of the attention mechanism SE module being unable to deploy on some embedded devices and improves the model's accuracy on embedded systems through knowledge distillation,operator optimization,and quantization operations.Finally,an embedded tactile recognition system is built,and the LZG-Net model is deployed within it for tactile recognition of four objects with different characteristics.Experimental results show that the model can accurately classify object categories and grasping states,achieving a classification accuracy of 90.94%.Its classification performance is superior to existing classic lightweight neural networks.

embedded systemlightweight modelrobotic graspingpyramid architecture

杨兰、刘聂天和、王民慧

展开 >

贵州大学 电气工程学院,贵州 贵阳 550025

贵州电网有限公司 贵阳市供电局,贵州 贵阳 550025

嵌入式系统 轻量级模型 机器人抓取 金字塔架构

国家自然科学基金资助项目

61663005

2024

贵州大学学报(自然科学版)
贵州大学

贵州大学学报(自然科学版)

CSTPCD
影响因子:0.396
ISSN:1000-5269
年,卷(期):2024.41(4)