首页|一种优化均值漂移模型的测站筛选方法

一种优化均值漂移模型的测站筛选方法

扫码查看
针对均值漂移模型在异常测站剔除过程中出现的"回漂"现象导致粗差未能尽数剔除、使其拟合结果有偏于实际的问题,提出基于惩罚回归优化均值漂移模型对异常测站进行剔除的方法.利用优化后的模型方法对"中国大陆构造环境监测网络"华南块体中东部观测的水平速度场数据进行拟合对比分析,并利用剔除后的有效测站进行形变特征反演.结果表明:利用惩罚回归优化的均值漂移模型能更有效地识别异常测站点,筛选后的测站数据能顾及块体整体运动的平滑性,同时比均值漂移模型剔除具有更高的拟合精度,利用有效数据反演的形变特征也符合该区域实际运动趋势.
A Station Selection Method for Optimizing Mean Shift Model
In view of the problem that the"backdrift"phenomenon of the mean drift model in the process of anomalous station exclusion leads to the failure to eliminate all the gross errors,and the fitting results are biased to reality,a method of eliminating abnormal stations based on penalty regression optimization mean drift model is proposed.The optimized model method was used to fit and compare the horizontal velocity field data observed in the central and eastern parts of the South China block by the"Chinese mainland tectonic environment monitoring network",and the deformation characteristics were inverted by using the effective stations after elimination.The results show that the mean drift model optimized by penalty regression can identify abnormal stations more effectively,and the filtered station data can take into account the overall motion smoothness of the block and have a higher fitting accuracy than the mean drift model.The deformation characteristics inverted by using effective data also conform to the actual movement trend of the region.

crustal movementanomaly stationmean shift modelpenalty functionstrain characteristics

范成成、张俊

展开 >

贵州工程应用技术学院 矿业工程学院,贵州 毕节 551700

贵州大学 矿业学院,贵州 贵阳 550025

地壳运动 异常测站 均值漂移模型 惩罚函数 应变特征

2024

贵州大学学报(自然科学版)
贵州大学

贵州大学学报(自然科学版)

CSTPCD
影响因子:0.396
ISSN:1000-5269
年,卷(期):2024.41(5)