首页|一种改进ANN的GNSS高程曲面拟合方法研究

一种改进ANN的GNSS高程曲面拟合方法研究

扫码查看
在精细化区域高程系统构建过程中高程基准转化模型研究中,主要使用机器学习算法对传统曲面拟合方法进行替代,即使用非线性机器学习模型来实现GNSS高程系统的拟合工作.本文分别利用蚁群优化算法、遗传算法和粒子群优化算法对ANN模型进行优化,使用某矿区观测站实测的GNSS和水准数据对优化算法效果进行验证.实验结果表明:在观测区域较大和高程异常不规则的情况下,使用优化算法对ANN模型进行优化均取得较好效果.粒子群算法优化后的ANN模型更加适用于对小区域内GNSS高程曲面拟合上的应用,有效提升了高程拟合精度.
An improved ANN method for GNSS elevation surface fitting
In the study of elevation datum transformation model in the construction of refined regional elevation system,machine learning algorithm is mainly used to replace the traditional surface fitting method,that is,nonlinear machine learning model is used to realize the fitting of GNSS elevation system.In this paper,the ant colony optimi-zation algorithm,genetic algorithm and particle swarm optimization algorithm are used to optimize the ANN model.The measured GNSS and leveling data of a mining observation station are used to verify the effect of the optimization algorithm.The experimental results show that,in the case of large observation area and irregular height,the opti-mized ANN model has achieved good results.The ANN model optimized by the particle swarm optimization algo-rithm is more suitable for the GNSS elevation surface fitting in a small area,which effectively improves the accuracy of elevation fitting.

artificial neural networkant colony algorithmgenetic algorithmparticle swarm optimization algorithm

吕毅、陈启智

展开 >

贵州地矿基础工程有限公司,贵州 贵阳 550081

人工神经网络 蚁群算法 遗传算法 粒子群优化算法

2024

贵州科学
贵州科学院

贵州科学

影响因子:0.395
ISSN:1003-6563
年,卷(期):2024.42(3)