首页|融合光学与合成孔径雷达遥感特征的道路提取方法

融合光学与合成孔径雷达遥感特征的道路提取方法

Road extraction method based on optics and heterogeneous remote sensing

扫码查看
针对现有遥感图像种类多样,且不同的卫星遥感图像之间包含有大量的互补特征,但现有的方法通常仅使用单一遥感无法充分利用多元特征的问题.道路提取研究采用马萨诸塞州道路数据集,手动筛选样本,并使用Sentinel-1 卫星的SAR振幅强度图像扩充特征,以Resnet50 为编码器采用Unet架构,首先通过两步式运算分离异源影像特征提取过程,其次通过解码器迭代训练融合特征,为了增强影像的匹配度,采用CFOG特征进行异源遥感图像配准,并使用Tversky Loss作为负平衡样本的损失函数,辅助路网提取,实现道路分割,获得了高精度与准确度的道路提取结果.结果表明:低分辨率SAR影像也包含有高分辨光学影像不具有的特征,通过深度学习方法能够较好地融合两种异源特征,提升道路分割的准确性,对于噪声抑制有更好的效果.实验及分析结果可为应用研究提供参考.
To address the problem that existing remote sensing images are diverse and contain a large number of complementary features between different satellite remote sensing images,but existing methods usually cannot fully utilize multiple features,in this paper,we adopt the Massachusetts road dataset,manually screen the samples,ex-pand the features using the SAR amplitude intensity images of Sentinel-1 satellite,and adopt the Unet architecture with Resnet50 as the encoder.Firstly,separate the heterogenous image feature extraction process by two-step opera-tion.Secondly,train the fusion features by iterative decoder.In order to enhance the image matching,we adopt CFOG features for heterogenous remote sensing image alignment,and use Tversky Loss as the loss function of nega-tive balance samples to assist road network extraction to achieve road segmentation.The road extraction results with high accuracy and precision are obtained.The results show that low-resolution SAR images also contain features that high-resolution optical images do not have,and the deep learning method can better fuse the two heterogenous features,improve the accuracy of road segmentation,and have a better effect on noise suppression.The experimental and analytical results of this paper can provide reference for application research in related fields.

Massachusetts roadsdeep learningroad network extractionheterogenous remote sensingfeature fu-sion

楼荣

展开 >

江西省地质调查勘查院基础地质调查所,江西 南昌 330025

江西有色地质矿产勘查开发院,江西 南昌 330025

马萨诸塞州道路 深度学习 路网提取 异源遥感 特征融合

2024

贵州科学
贵州科学院

贵州科学

影响因子:0.395
ISSN:1003-6563
年,卷(期):2024.42(6)