首页|黔西南州地区多模式集成方法的气温降水订正算法研究

黔西南州地区多模式集成方法的气温降水订正算法研究

扫码查看
[目的]为研究本地化的智能网格客观预报算法,提升贵州省黔西南州地区数值模式气温和降水预报准确率.[方法]基于消除偏差集合平均和加权消除偏差2 种多模式集成方法,采用动态误差权重系数、高低温单独建模和降水分级统计的方式建模,对欧洲中心(ECMWF)、德国(GERMANY)和日本(JAPAN)数值模式在黔西南州及周边地区的气温、降水预报进行站点和格点订正,并使用多种评估检验方法对比分析订正前后的预报误差、准确率和预报技巧.[结果](1)基于消除偏差法的订正预报有效地减小了数值模式的预报误差,2 m气温和 12h累积降水预报误差分别减小至 2.5℃和 2.5 mm以下.(2)基于动态误差的加权消除偏差订正预报,明显地提升了模式的气温和降水预报准确率,通过高低温单独建模和降水分级统计方式,进一步改善了高低温和分级降水预报效果.其中,格点和站点的2m气温预报准确率,比评分最优的模式ECMWF分别提升了41.48%和 12.47%,小雨站点预报准确率比评分最优的模式JAPAN提升了23.9%.最低气温和小雨预报准确率超过了本地预报员历史预报,分别提升了 1.44%和27.8%.[结论]通过高低温单独建模和降水分级统计方式构建多模式集成订正预报模型,有效地减小了模式的2m气温和 12h累积降水的预报误差,提升了预报准确率.尤其是2m气温格点预报和降水站点订正预报,订正效果明显.其中,小雨预报明显优于本地预报员的历史预报,对于实际预报业务有较大参考价值.
Research on Temperature and Precipitation Correction Algorithms Based on Multi-Model Ensemble Methods for Qianxinan Prefecture of Guizhou Province
This study investigates localized objective forecasting algorithms for intelligent grid systems aiming at improving the accuracy of temperature and precipitation forecasts from numerical models in the Qianxinan Prefecture of Guizhou Province.Made corrections to temperature and precipitation forecasts from numerical models(ECMWF,GERMANY,and JAPAN)at both station and grid levels for the Qianxinan Prefecture and the adjacent areas by utilizing two multi-model ensemble methods(bias correction ensemble averaging and weighted bias correction),dynamic error weighting coefficient,separate modeling for high and low temperatures and precipitation classification statistics.Moreover,a comparative analysis of forecast errors,accuracy and skills is conducted before and after the corrections using various evaluation metrics.The results indicate that:(1)The bias correction forecasts can significantly reduce the errors of numerical model forecasts,with 2 m temperature and 12 h accumulated precipitation errors decreasing to below 2.5℃ and 2.5 mm,respectively.(2)The weighted bias correction based on dynamic errors can notably enhance the accuracy of temperature and precipitation forecasts.The separate modeling for high and low temperatures,along with precipitation classification,further can improve forecast effects.Specifically,relative to the best-performing model ECMWF,the accuracy of 2 m temperature forecasts at grid and station levels is improved by 41.48%and 12.47%,respectively.The accuracy of light rain forecasts at stations is 23.9%higher than that of the best-scoring model JAPAN.Moreover,the accuracy of minimum temperature and light rain forecasts exceeds the forecasts of local forecasters by 1.44%and 27.8%,respectively.In summary,the multi-model ensemble bias correction forecasting model by means of separate modeling for high and low temperatures and graded precipitation statistics can effectively reduce forecast errors of 2 m temperature and 12 h accumulated precipitation,significantly improving the forecast accuracy.The improvement in 2 m temperature grid forecasts and precipitation station corrections demonstrate considerable effectiveness,with light rain forecasts outperforming historical forecasts made by local forecasters.These findings are of great reference value for operational forecasting.

multi-model ensembleBREMWBREMseparate modeling for high and low temperaturesdynamic error weighting

孔德璇、王瑶、唐远志、周则成、杨春艳、李刚

展开 >

贵州省山地气象科学研究所,贵州 贵阳 550081

贵州省气象台,贵州 贵阳 550002

江西省气象台,江西 南昌 330000

贵州省黔西南布依族苗族自治州气象局,贵州 兴义 562400

展开 >

多模式集成 消除偏差集合平均 加权消除偏差集合平均 高低温单独建模 动态误差权重

2024

中低纬山地气象
贵州省气象学会

中低纬山地气象

影响因子:0.33
ISSN:2096-5389
年,卷(期):2024.48(6)