首页|基于F-P干涉仪CH4气体点源探测关键参数仿真分析

基于F-P干涉仪CH4气体点源探测关键参数仿真分析

扫码查看
基于多光束干涉光谱成像原理,研究一种高空间分辨率甲烷气体点源探测方法。首先,介绍了甲烷气体探测仪的工作原理和探测方案,详细设计法布里-珀罗干涉仪的系统参数,并建立甲烷气体探测正演模型。然后,分析了干涉信号和甲烷浓度之间的对应关系,以及仪器参数对探测灵敏度的影响。最终,迭代优化得到各光学结构参数的最优取值。结果表明,在甲烷探测波段为1 630~1 675 nm,自由光谱范围为12。5 nm,光谱分辨率为0。1 nm,法布里-珀罗标准具腔长为0。08 mm,腔内反射率为97。5%,截止滤光片范围为(1 630±4)nm~(1 675±4)nm时,探测源25%浓度变化对应的干涉信号相对变化量范围为[0。65%,4。30%],探测灵敏度较好。研究结果可为高精度碳监测提供理论依据和技术支撑。
Simulation Analysis of Key Parameters for CH4 Gas Point Source Detection Based on F-P Interferometer
The increase in greenhouse gases carbon dioxide and methane can directly lead to changes in the global climate and cause a significant impact on the economies of countries and human life.Methane,as the second-largest greenhouse gas on Earth,has a global warming potential 30 times higher than CO2 over a 100-year period,and its lifespan is approximately 9.1 years.At present,anthropogenic CH4 emissions primarily originate from numerous point sources.Implementing measures to reduce CH4 emissions can help decrease the rate of global warming.Therefore,it is crucial to conduct research on monitoring technologies for CH4 and investigate key carbon emission sources.Hyperspectral satellite remote sensing for detecting greenhouse gases has become a candidate technology for point source detection.It has advantages such as high viewpoint,wide field of view,the ability to achieve dynamic monitoring,obtain more precise and demand-driven information data.Utilizing remote sensing methods to monitor and provide feedback on point source emissions of greenhouse gases like methane plays a crucial role in effectively addressing climate change.Existing payload technologies in China are geared towards large satellite platforms,enabling wide-area coverage with low spatial resolution monitoring.However,traditional methods such as grating spectrometry,Michelson interferometry,and spatial heterodyne are unable to meet the efficient and high-precision monitoring requirements for small-scale anthropogenic emission sources.They struggle to achieve point source detection.Therefore,it is necessary to conduct research on satellite remote sensing carbon monitoring technologies that offer high accuracy and high spatial resolution.The Fabry-Pérot interferometry technique possesses extremely high spectral resolution,capable of discerning minute wavelength differences in the spectrum.The theoretical basis of this technique is the multi-beam equal-inclination interferometry.By using an interference ring,it is possible to directly obtain the spectral information of target light at different incident angles.By collecting the spectral information corresponding to different wavelengths of the target at different positions from multiple consecutive shots,the target spectral curve is obtained.This technique establishes a relationship between CH4 gas concentration and the depth of spectral curve notches,offering advantages in point source detection with high spectral resolution and high spatial resolution.In CH4 gas detection,the parameters of the Fabry-Pérot interferometer and the optical filter have a significant impact on detection sensitivity.Properly configuring these parameters is crucial for improving detection accuracy.This paper presents a study on a high spatial resolution method for detecting point sources of methane gas based on the principle of multi-beam interferometric spectral imaging.Firstly,the working principle and detection scheme of the methane gas detector are introduced.The system parameters of the Fabry-Pérot interferometer are designed,and a forward model for methane gas detection is established.Subsequently,the correspondence between interference signals and methane concentration,as well as the influence of instrument parameters on detection sensitivity,are analyzed.In the end,iterative optimization is performed to obtain the optimal values of various optical structural parameters.The results indicate that within the methane detection wavelength range of 1 630~1 675 nm,with a free spectral range of 12.5 nm and a spectral resolution of 0.1 nm,the optimal parameters for the Fabry-Pérot interferometer are a cavity length of 0.08 mm and an intra-cavity reflectance of 97.5%.By using a cutoff filter with a range of(1 630±4)nm~(1 675±4)nm,the relative change in interference signal corresponding to a 25%concentration variation of the detection source falls within the range of[0.65%,4.30%],indicating a good detection sensitivity.The research results of this study provide a theoretical basis and technical support for high-precision.

Greenhouse gases detectionCH4Fabry-Pérot interferometerDetection sensitivity

张强、柏财勋、傅頔、李娟、畅晨光、赵珩翔、王素凤、冯玉涛

展开 >

中国科学院西安光学精密机械研究所 光谱成像技术重点实验室,西安 710119

中国科学院大学,北京 100049

山东理工大学 物理与光电工程学院,淄博 255000

温室气体探测 甲烷 法布里-珀罗干涉仪 探测灵敏度

国家自然科学基金中国科学院西部青年学者项目陕西省自然科学基础研究计划中国科学院西部之光交叉团队项目

41005019XAB 2016A072019JQ?931E1294301

2024

光子学报
中国光学学会 中国科学院西安光学精密机械研究所

光子学报

CSTPCD北大核心
影响因子:0.948
ISSN:1004-4213
年,卷(期):2024.53(1)
  • 3