Fabrication of Electromagnetic Functional Microarray Structure Based on Electrohydrodynamic Printing
The electromagnetic functional microarray structures have wide applications in electromagnetic shielding,stealth technology,electromagnetic filtering,and other areas,prompting researchers to continually explore them.Currently,the development of electromagnetic functional microstructures is constrained by limitations in manufacturing processes,facing challenges such as low manufacturing efficiency,expensive equipment,low automation level,and poor conformal manufacturing accuracy.Therefore,this paper proposes a manufacturing process method for electromagnetic functional microarray structures based on electrohydrodynamic printing technology.During the research process of this paper,a new electrohydrodynamic printing method was developed based on the application of alternating current pulse modulation waveform electric field and real-time distance compensation process strategy.The paper analyzed the mechanism of alternating current pulse modulation waveform electrohydrodynamic printing and the implementation method of distance compensation process.These process methods overcome the influence of residual charge on insulating substrates and substrate morphology defects on the quality of printed microstructures,effectively reducing the line width size error of composite material substrate microstructures by 47.4%.Hardware equipment and software systems for electrofluidic printing were developed,enabling coordinated control of motion and parameter adjustment.This provides the equipment foundation for automated manufacturing of microstructures.The study also investigated the relationship between voltage amplitude,frequency,duty cycle,printing speed,driving air pressure,and printing distance parameters during the electrohydrodynamic printing process and their impact on the quality of microstructure formation.During the research process,uniform and completed microstructures with a line width of 15 μm were successfully manufactured.Using optimized printing parameter combinations,microstructures of different types of electromagnetic functional array were manufactured with line widths of 30 μm,120 μm,and 200 μm,and their morphologies were characterized.The study investigated the impact of post-processing curing conditions on the resistivity of microstructures,obtaining a minimum resistivity of 9.18× 10-8 Ω·m for microstructures with a line width of 60 μm.The microstructural reasons for the lower resistivity were characterized through SEM.A total of 70×70 large-area resistive array microstructures were designed and manufactured,after curing and microwave chamber measurements,effective suppression of electrohydrodynamic waves within the frequency band was achieved at the central frequency of 23.64 GHz,with a transmission coefficient of-42.89 dB.The comprehensive research indicates that electrofluidic printing technology holds promising prospects for high-precision,high-efficiency,and non-destructive manufacturing of electromagnetic functional microarray structures.The fabricated electromagnetic functional structures demonstrate excellent performance,offering new insights into the preparation methods for electromagnetic functional structures.
Electrohydrodynamic printingElectromagnetic functionMicroarray structureResistivityTransmittance coefficientComposite material substrate