首页|胶质瘤坏死性凋亡相关lncRNA预后模型的构建及药物预测

胶质瘤坏死性凋亡相关lncRNA预后模型的构建及药物预测

扫码查看
目的:本研究旨在基于与坏死性凋亡(Necroptosis)有关的长链非编码RNA(lncRNAs)构建一种胶质瘤患者的预后评估模型。通过这一模型,我们旨在揭示这些 lncRNAs 与胶质瘤患者预后的关联,并寻求新的治疗药物。方法:本研究从 TCGA 数据库提取胶质瘤患者的完整转录组和临床数据。运用 Pearson相关性分析识别与坏死性凋亡共表达的 lncRNAs,并应用单因素及多因素 Cox 回归分析及 Lasso 回归来筛选与预后密切相关的 lncRNAs,从而建立预后评估模型。模型的准确性通过生存分析、ROC 曲线、独立预后分析、列线图和校准曲线进行验证。此外,功能富集分析用于识别高风险和低风险组中活跃的代谢通路,同时进行免疫分析并筛选出潜在的治疗胶质瘤的药物。结果:利用预后模型按照风险评分将患者分为高风险组和低风险组。研究发现两组患者在生存曲线、风险分布、免疫细胞浸润、免疫相关功能、免疫检查点及免疫治疗方面存在显著差异。ROC曲线、独立预后分析和列线图的结果支持了模型预测患者生存期的高可靠性。结论:基于10种坏死性凋亡相关的lncRNAs的预测模型有助于评估胶质瘤患者的预后和分子特征。
The construction of a prognostic model for necroptosis-related lncRNA in glioma and drug prediction
Objective:To construct a prognostic assessment model for glioma patients based on long non-coding RNAs(ln-cRNAs)associated with necroptosis.Through this model,we aim to uncover the correlation between these lncRNAs and the prog-nosis of glioma patients,seeking new therapeutic avenues.Methods:Transcriptomic and clinical data of glioma patients were ex-tracted from the TCGA database.Pearson correlation analysis was employed to identify lncRNAs co-expressed with necroptosis.Single-factor and multi-factor Cox regression analyses,along with Lasso regression,were used to screen lncRNAs closely associ-ated with prognosis,thereby establishing a prognostic assessment model.The model's accuracy was validated through survival analysis,ROC curves,independent prognostic analysis,forest plots,and calibration curves.Additionally,functional enrichment analysis was conducted to identify active metabolic pathways in the high-risk and low-risk groups.Immunological analysis was per-formed to select potential drugs for glioma treatment.Results:The prognostic model categorized patients into the high-risk and low-risk groups based on risk scores.Significant differences were observed between the two groups in terms of survival curves,risk distribution,immune cell infiltration,immune-related functions,immune checkpoints,and immune therapy.The results of ROC curves,independent prognostic analysis,and forest plots supported the high reliability of the model in predicting patient survival.Conclusion:The predictive model,based on 10 necroptosis-related lncRNAs,contributes to the assessment of prognosis and mo-lecular characteristics in glioma patients.

GliomaNecroptosisLncRNADrug Screening

杨宏民、王鹏程、张超才、赵建农

展开 >

海南医学院,海南 海口 570311

海南医学院附属海南省人民医院神经外科,海南 海口 570311

胶质瘤 坏死性凋亡 LncRNA 药物筛选

海南省"南海新星"科技创新人才平台项目(第一批)

MHXXRCXM202347

2024

海南医学院学报
海南医学院

海南医学院学报

CSTPCD北大核心
影响因子:1.068
ISSN:1007-1237
年,卷(期):2024.30(11)