首页|基于Hammerstein模型的执行机构非线性参数辨识

基于Hammerstein模型的执行机构非线性参数辨识

扫码查看
针对火电机组中流过执行机构的介质流量难以测量,导致执行机构的非线性特性无法直接求取这一问题,提出用构建Hammerstein模型代替直接测量介质流量的间接测量法,进而求取执行机构的非线性特性,然后分别使用粒子群算法(PSO)和樽海鞘群算法(SSA),辨识所构建的Hammerstein模型的参数.另外,针对PSO算法和SSA算法辨识Hammerstein模型参数精度不高以及收敛速度慢的问题,提出了一种改进的粒子群-樽海鞘群的混合算法(IPS).最后基于烟道挡板的指令数据与再热器出口温度数据对模型进行了仿真.仿真结果表明,提出的IPS算法能改善PSO算法的过早收敛问题,提高SSA算法的辨识速度.因此通过建立Hammerstein模型能够解决介质流量难以测量的执行机构非线性参数辨识问题,并且提出的IPS算法能准确且快速的辨识Hammerstein模型的各项参数.
Nonlinear Characteristic Model Identification of Actuator Based on Hammerstein Model
To address the problem that the nonlinear characteristics of the actuator cannot be obtained directly due to the difficulty in measuring the flow rate of the medium flowing through the actuator in thermal power units,we proposed an indirect measurement method by constructing a Hammerstein model instead of directly measuring the medium flow rate.Then we used Particle Swarm Optimization(PSO)and Salp Swarm Algorithm(SSA)to identify the parameters of the Hammerstein model.In addition,aiming at the problems of low accuracy and slow convergence of PSO and SSA in identifying parameters of Hammerstein model,an improved hybrid algorithm of particle swarm-bottle swarm(IPS)was proposed.Finally,the model was simulated based on the command data of flue baffle and reheater outlet temperature data.Simulation results show that the proposed IPS algorithm can promote the premature convergence of PSO and im-prove the identification speed of SSA.Therefore,the Hammerstein model can solve the problem of nonlinear parameter identification of actuator whose media flow is difficult to measure,and the proposed IPS can accurately and quickly i-dentify the parameters of Hammerstein model.

Hammerstein modelactuator nonlinearityPSO algorithmSSA algorithmIPS algorithm

陈艺文、刘鑫屏、董子健

展开 >

华北电力大学控制与计算机工程学院,河北保定 071003

Hammerstein模型 执行机构非线性 PSO算法 SSA算法 IPS算法

国家重点研发计划项目

2017YFB0902100

2024

华北电力大学学报(自然科学版)
华北电力大学

华北电力大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.868
ISSN:1007-2691
年,卷(期):2024.51(1)
  • 21