首页|基于KL散度距离处理风电不确定性的负荷恢复分布鲁棒优化

基于KL散度距离处理风电不确定性的负荷恢复分布鲁棒优化

扫码查看
在构建以新能源为主体的新型电力系统的背景下,在恢复控制过程中积极利用新能源并充分应对其对运行安全带来的潜在风险对于减小停电损失具有重要意义.首先,为了表征风电出力的不确定性,采用KL散度(Kullback-Leibler)距离作为筛选极端风电出力场景的控制条件,并据此构建模糊集作为风电出力典型场景.在满足相关运行安全约束的前提下,建立了以最大化加权负荷恢复量为优化目标的分布鲁棒优化模型以制定计及风电的负荷恢复方案.经松弛处理和对偶转换所得到的混合整数二阶锥模型可调用商业求解器求解.以接入规模风电场的IEEE 10机39母线系统为例进行仿真,结果表明:相比于传统的鲁棒优化方法,该方法降低了优化结果的保守性,有助于加快负荷恢复,减小停电损失.
Distributionally Robust Optimization of Load Recovery Employing Kullback-Leibler Divergence Distance to Handle Wind Power Uncertainty
Under the background of constructing a new power system dominated by new energy sources,it is of great significance to actively utilize new energy in the process of restoration control and fully address its potential risks to op-erational safety to reduce power outage losses.Firstly,in order to characterize the uncertainty of wind power output,we used the KL divergence(Kullback-Leibler)distance as a control condition for screening extreme wind power output scenarios,and constructed a fuzzy set accordingly as a typical wind power output scenario.Under the premise of satis-fying the relevant operational safety constraints,we established a distributed robust optimization model with the optimi-zation objective of maximizing the weighted load recovery amount to formulate a load recovery scheme considering wind power.The mixed-integer second-order cone model obtained by relaxation and dual transformation can be solved by calling commercial solvers.Taking the IEEE 10-machine 39 busbar system of a large-scale wind farm as an example,the simulation results show that compared with the traditional robust optimization method,this method reduces the con-servatism of the optimization results,and helps to speed up the load recovery and reduce the power outage losses.

blackoutload restorationwind power uncertaintyKullback-Leibler divergence distancedistributional-ly robust optimization

刘艳、王建涛、周皖晨、顾雪平

展开 >

华北电力大学电气与电子工程学院,河北保定 071003

国网安徽省电力有限公司超高压分公司,安徽合肥 102209

大停电 负荷恢复 风电不确定性 KL散度距离 分布鲁棒优化

国家自然科学基金资助项目国家自然科学基金资助项目

5167707152107092

2024

华北电力大学学报(自然科学版)
华北电力大学

华北电力大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.868
ISSN:1007-2691
年,卷(期):2024.51(2)
  • 24