首页|基于近邻元分析的风电机组状态监测特征选择方法

基于近邻元分析的风电机组状态监测特征选择方法

扫码查看
针对现有特征选择方法难以从大量的SCADA参量中挑选出重要变量的问题,基于近邻元分析算法提出一种专门适用于风电机组状态监测的特征变量选择方法.所提方法根据每个待选变量对回归精度的贡献率为各变量赋予相应的重要度权值,从而挑选出最重要的特征变量.通过分析SCADA数据中冗余变量的特点,针对性地提出了基于相关系数矩阵的去除冗余方法.采用Pearson相关系数、互信息和随机森林三种方法作为对比,以门控循环神经网络作为模型预测齿轮箱油池温度,用预测精度指标和残差控制图对各特征选择方法的选择结果进行评价和对比,结果表明所提方法的特征选择结果更加直观、冗余变量更少、预测精度更高.
Feature Selection Method for Wind Turbine Condition Monitoring Based on Neighborhood Component Analysis
Aiming at the problem that the existing feature selection methods are difficult to select important variables from a large number of SCADA parameters,we proposed a feature variable selection method specially suitable for wind turbine condition monitoring based on the nearest neighbor component analysis.The proposed method assigns corre-sponding importance weights to each variable according to the contribution rate of each candidate variable to the regres-sion accuracy,so as to select the most important feature variables.By analyzing the characteristics of redundant varia-bles in SCADA data,we proposed a method of eliminating redundancy based on correlation coefficient matrix.The three methods of Pearson correlation coefficient,mutual information and random forest are used as comparison,and ga-ted recurrent unit network is used as model to predict the gearbox oil tank temperature.The feature selection results of the four methods are evaluated by the prediction accuracy index and residual control chart.The results show that the se-lection result of the proposed method is more intuitive,less redundant variables and higher prediction accuracy.

feature selectionvariable selectionneighbourhood component analysiswind turbineSCADA datacondition monitoring

罗志宏、刘长良、刘帅

展开 >

华北电力大学控制与计算机工程学院,河北保定 071003

特征选择 变量选择 近邻元分析 风电机组 SCADA数据 状态监测

中央高校基本科研业务费专项中央高校基本科研业务费专项

2020JG0062020MS117

2024

华北电力大学学报(自然科学版)
华北电力大学

华北电力大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.868
ISSN:1007-2691
年,卷(期):2024.51(3)
  • 19