首页|基于MIC和MA-LSTNet的超短期电力负荷预测模型

基于MIC和MA-LSTNet的超短期电力负荷预测模型

扫码查看
在多元时序超短期电力负荷预测中,各变量之间往往存在长期和短期两种时间模式,而长短期时间序列网络(LSTNet)可以提取天气因素与负荷之间的短期变化和长期趋势,提高了预测的精度.本文建立了基于最大信息系数(MIC)和采用多头注意力机制的长短期时间序列网络(MA-LSTNet)的超短期负荷预测模型.首先,利用最大信息系数分析天气变量在各负荷滞后时段与预测序列的相关性,使用符号聚合近似(SAX)量化相关性曲线,对天气变量进行最优选择,减少模型输入冗余;其次,对长短期时间序列网络进行了改进,提出了采用多头注意力机制的长短期时间序列网络,通过在非线性部分加入自注意力层,实现了对于非季节性、非周期性的长短期时间模式的提取.截至目前与其它模型相比,本文提出的模型具有最佳的预测性能.
Ultra-short-term Power Load Forecasting Model Based on MIC and MA-LSTNet
In multivariate time-series ultra-short-term power load forecasting,long-term and short-term time patterns of-ten exist among variables.The long-and short-term time-series network(LSTNet)can extract short-term fluctuations and long-term trends between weather factors and loads,which improves the forecasting accuracy.In this paper,we es-tablished an ultra-short-term power load forecasting model based on maximum information coefficient(MIC)and long-and short-term time series network with multi-head attention mechanism(MA-LSTNET).Firstly,we utilized the maxi-mum information coefficient(MIC)to analyze the correlation between weather variables and forecast series in each load lag period.Then,we employed the symbol aggregation approximation(SAX)to quantify the correlation curves and perform optimal selection of weather variables to minimize model input redundancy.Secondly,we improved the LST-Net,and proposed a long-and short-term time series network using multi-head attention mechanism(MA-LSTNet).By integrating a self-attention layer into the nonlinear part,the model is able to extract non-seasonal and non-periodic long-and short-term time patterns.So far,compared with other models,the model proposed in this paper exhibits the best predictive performance.

long-and short-term patternmaximum information coefficientrecurrent-skip layerattention mecha-nismsymbol aggregation approximation

龚钢军、蔡贺、杨佳轩、何建军

展开 >

北京市能源电力信息安全工程技术研究中心(华北电力大学),北京 102206

新疆石油管理局有限公司电力分公司,新疆克拉玛依 834000

长短期模式 最大信息系数 循环跳过层 注意力机制 符号聚合近似

2024

华北电力大学学报(自然科学版)
华北电力大学

华北电力大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.868
ISSN:1007-2691
年,卷(期):2024.51(6)