首页|基于改进K-means算法的分布式发电集群划分方法

基于改进K-means算法的分布式发电集群划分方法

扫码查看
随着大规模分布式电源的接入,采用集中式控制的传统配电网面临通信延时、计算量大与控制设备过多等问题,而基于集群划分的分布式发电群调群控技术能有效解决上述问题.而现有集群划分方法在集群划分指标与集群划分算法上均存在一定不足,因此提出一种考虑集群规模的分布式发电集群划分方法.首先,提出考虑电气距离、集群功率平衡以及集群规模的综合性集群划分指标体系,在保证集群结构强度的基础上使集群具有一定电压调节能力.其次,采用嵌入莱维飞行优策略的灰狼优化算法,对K-means算法进行改进,并将其应用于集群划分.最后,以某地实际35 kV/10 kV配电网验证了所提方法的可行性与有效性,为分布式发电集群划分提供参考.
Distributed Generation Cluster Partitioning Method Based on LG WO Improved K-means Algorithm
With the access of large-scale distributed power supply,the traditional centralized-control distribution net-work encounters issues including communication delays,heavy computational loads,and an overabundance of control e-quipment.However,the distributed generation group control technology,which is based on cluster partitioning,can ef-fectively address these challenges.Existing cluster partitioning methods exhibit deficiencies in both cluster partitioning index and cluster partitioning algorithm,so we propose a new cluster partitioning method considering cluster size.First-ly,we propose a comprehensive index system for cluster partitioning,which considers electrical distance,cluster power balance and cluster scale.This ensures that the cluster maintains a certain voltage regulation ability and structural strength of the cluster.Secondly,we use the grey wolf optimization algorithm embedded with Levy flight optimization strategy to improve the K-means algorithm and apply it to cluster partitioning.Finally,we verify the feasibility and ef-fectiveness of the proposed method by the actual 35 kV/10 kV distribution network.This serves as a valuable reference for the partitioning of distributed generation clusters.

gray wolf optimization algorithmLevy flightK-means algorithmdistributed generationcluster partition

尉同正、杜红卫、夏栋、韩韬、吴雪琼、徐政

展开 >

南瑞集团有限公司(国网电力科学研究院有限公司),江苏南京 211106

国电南瑞科技股份有限公司,江苏南京 211106

美国佐治亚大学工程学院,美国雅典30602

灰狼优化算法 莱维飞行 K-means算法 分布式电源 集群划分

2024

华北电力大学学报(自然科学版)
华北电力大学

华北电力大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.868
ISSN:1007-2691
年,卷(期):2024.51(6)