首页|基于BP神经网络的压力传感器原位温度补偿技术

基于BP神经网络的压力传感器原位温度补偿技术

扫码查看
由于压阻式压力传感器存在温度漂移,而现有的软件温度补偿方法依赖额外的温度传感器获取温度信号.为了简化这一流程,提出了一种基于BP神经网络的压力传感器原位温度补偿方法.利用多参数测量方法,仅依赖压力传感器自身的电学信号,无需引入新的传感器,便能实现对传感器原位温度及压力的测量;进一步通过BP神经网络实现压力传感器温-压解耦及温度补偿.结果显示,补偿后传感器输出误差降低至±0.5%FS以内,零位温度漂移从0.021%FS/℃降低到0.002 5%FS/℃,灵敏度温度漂移从0.15%FS/℃降低到0.005 5%FS/℃,显著降低了零位温度漂移和灵敏度温度漂移.
In-Situ Temperature Compensation Technology for Pressure Sensors Based on BP Neural Network
Due to the temperature drift of piezoresistive pressure sensors,existing software temperature compensation methods rely on additional temperature sensors to obtain temperature signals.To simplify this process,a pressure sensor in-situ temperature compensation method based on BP neural networks is proposed.Utilizing a multi-parameter measurement method,it can achieve in-situ temperature and pres-sure measurements of the sensor based solely on its electrical signals,without the need to introduce new sensors.Furthermore,it achieves pressure sensor temperature-pressure decoupling and temperature com-pensation through BP neural networks.The results show that the sensor output error is reduced to within±0.5%FS after compensation,with the zero-position temperature drift reduced from 0.021%FS/℃to 0.002 5%FS/℃,and the sensitivity temperature drift reduced from 0.15%FS/℃to 0.005 5%FS/℃,significantly reducing the zero-position temperature drift and sensitivity temperature drift.

pressure transducertemperature compensationmulti-parameter measurementBP neural network

刘雨桥、张姝、雷程、余建刚、唐梦璇、王涛龙、梁庭

展开 >

中北大学 省部共建动态测试技术国家重点实验室,山西 太原 030051

天津津航技术物理研究所,天津 300308

成都天奥电子股份有限公司,四川 成都 610037

压力传感器 温度补偿 多参数测量 BP神经网络

2025

测试技术学报
中国兵工学会

测试技术学报

影响因子:0.305
ISSN:1671-7449
年,卷(期):2025.39(1)