首页|不可靠通信下基于信誉的联邦学习客户端选择

不可靠通信下基于信誉的联邦学习客户端选择

扫码查看
联邦学习作为一种分布式机器学习框架,因其数据隐私保护特性受到广泛关注,然而,恶意客户端和不可靠通信严重影响了其性能与效率.为了解决上述问题,提出了一种不可靠通信下基于信誉的多任务发布者的联邦学习客户端选择机制.首先,使用上行链路模型传输成功概率评估通信可靠性,并考虑了其对聚合模型性能的影响.其次,提出了一种全面的客户端信誉评价方法,并构建了以最大化任务发布者的聚合模型性能以及所选客户端的信誉-价格比为优化目标的客户端选择机制.为了解决该优化问题,将其建模为马尔可夫决策过程,并利用好奇心驱动的深度Q学习算法进行求解.实验结果表明,所提算法显著优于基准算法,对联邦学习的性能有显著改善.
Reputation-Based Client Selection for Federated Learning Under Unreliable Communication
Federated learning is a distributed machine learning framework that has received widespread attention for its data protection properties.However,malicious clients and unreliable communication seri-ously affect its performance and efficiency.To solve the above problems,a reputation-based federated learning client selection mechanism for multi-task publishers in unreliable communication is proposed.Firstly,the communication reliability is evaluated using the uplink model transmission success probability and its impact on the performance of the aggregation model is also considered.Secondly,a comprehensive client reputation evaluation method is proposed and a client selection mechanism with the optimization objective of maximizing the performance of the aggregation model of the task publisher as well as the reputation-price ratio of the selected client is constructed.To solve this optimization problem,it is mod-eled as a Markov decision process and the curiosity driven deep Q-learning network algorithm is used to achieve optimization.The result shows that the proposed algorithm outperforms the baselines,leading to a significant improvement in the performance of federated learning.

federated learningunreliable communicationreputationclient selectioncuriosity driven deep Q-learning network(CDQN)

贾惠景、付芳、张志才

展开 >

山西大学 物理电子工程学院,山西 太原 030051

海南大学 计算机科学与技术学院,海南 海口 570228

联邦学习 不可靠通信 信誉 客户端选择 好奇心驱动的深度Q学习

2025

测试技术学报
中国兵工学会

测试技术学报

影响因子:0.305
ISSN:1671-7449
年,卷(期):2025.39(1)