首页|金字塔局部聚合描述符的视觉位置识别研究

金字塔局部聚合描述符的视觉位置识别研究

扫码查看
视觉位置识别是计算机视觉和机器人领域中重要的研究内容.自然场景中由于视点改变所带来的图像内容变化会对位置识别造成一定的难度.为了解决这一问题,提出一种基于位置聚类的特征重组方法.首先,提出一种通用的金字塔扩展方法PyramidVLAD用于直方图特征提取.此外,为了进一步提升效率,将距离在一定阈值内的图像聚类至同一位置,然后再进行相似性计算.通过多组实验验证所提方法的有效性,使用PyramidVLAD与先进方法APANet进行比较,在Recall@1方面,所提方法在两个数据集中分别取得了1.02和2.54百分点的提升,实验结果表明所提方法能够在两个位置识别的基准数据集中获得比现有方法更好的效果.
Learning PyramidVLAD for Visual Place Recognition
Visual place recognition is an important issue in both computer vision and robotics.Changes in image content caused by viewpoint changes in natural scenes still pose a challenge to location recognition.To solve this problem,a novel feature reorganization method based on location clustering is proposed.Firstly,a general pyramid expansion scheme is extracted based on histogram features,called PyramidV-LAD.To maximize the effect of the new function,the similarity is evaluated by clustering images with a certain threshold into same location.Extensive experiments have been conducted to verify the effective-ness of the proposed method using Pyramid VLAD to compare with the best method,APANet.These two datasets achieve improvements of 1.02 and 2.54 percent points in Recall@1,respectively.The results show that this method can consistently obtain better performance than the state-of-the-art methods on the two standard place recognition benchmarks.

visual place recognitionpyramid principal phasesplace clusteringimage processing

张婉怡、王佳、宋明星

展开 >

吉林师范大学 信息技术学院,吉林 四平 136000

吉林师范大学 吉林省光电子材料与器件工程研究中心,吉林 四平 136000

视觉位置识别 金字塔主成分 位置聚类 图像处理

2025

测试技术学报
中国兵工学会

测试技术学报

影响因子:0.305
ISSN:1671-7449
年,卷(期):2025.39(1)