首页|基于CAP-Net的多粒度乳腺癌病理图像识别模型

基于CAP-Net的多粒度乳腺癌病理图像识别模型

扫码查看
在医学图像识别领域,图像的特征提取与图片的放大倍数有着紧密的联系,因此,多数乳腺癌图像识别模型都会在不同放大倍数下进行实验.但在实际应用中希望能够综合不同倍数的图像信息来全面评估疾病特征,提升患者治疗效果.针对上述问题以及医学图像中肿瘤分类的挑战,聚焦于关注肿瘤类别而不依赖于特定放大倍数,提出了基于卷积神经网络(Convolutional Neural Networks,CNN)和上下文感知注意力池化(Context-aware Attentional Pooling,CAP)的分类模型.首先通过CNN提取图像的卷积特征,然后结合CAP模块综合考虑4种级别的特征上下文信息(包括像素级、小区域、大区域和图片级)进行分类.使用DenseNet121、MobileNetV2和Xception 3种CNN网络结合CAP在BreaKHis数据集上进行实验,将同一类别4种不同放大倍数的数据合并起来,对8类乳腺癌病理图像进行识别.该模型的准确率达到了96.87%,验证了其在医学图像分类中的有效性.
Multi-Granularity Breast Cancer Pathological Image Recognition Model Based on CAP-Net
In the field of medical image recognition,the feature extraction of images is closely related to the magnification of the image,so most models of breast cancer image recognition will perform experi-ments at different magnifications.However,in practical applications,it is hoped that different magnifica-tions of image information can be comprehensively utilized to comprehensively evaluate disease features and improve patient treatment effectiveness.In response to the above issues and the challenges of tumor classification in medical images,a classification model based on convolutional neural networks(CNN)and context-aware attentional pooling(CAP)is proposed,focusing on tumor categories without relying on specific magnifications.Firstly,the convolutional features of the image are extracted through CNN,and then the four levels of feature context information(including pixel-level,small-region,large-region and image-level)are comprehensively considered by combining them with the CAP module for classification.Using DenseNet121,MobileNetV2 and Xception three CNN networks combined with CAP,experiments were carried out the on BreakHis dataset.Four data of the same category with different magnifications were combined to identify eight types of breast cancer images.The accuracy of the model reached 96.87%,verifying its effectiveness in medical image classification.

context-aware attentional poolingbreast cancer pathological imagesimage recognitioncon-volutional neural networkmulti-granularity image recognition

张丹蕾、白艳萍、程蓉、续婷

展开 >

中北大学 数学学院,山西 太原 030051

上下文感知注意力池化 乳腺癌病理图像 图像识别 卷积神经网络 多粒度图像识别

2025

测试技术学报
中国兵工学会

测试技术学报

影响因子:0.305
ISSN:1671-7449
年,卷(期):2025.39(1)