首页|基于改进YOLOv7-tiny的PCB表面缺陷检测

基于改进YOLOv7-tiny的PCB表面缺陷检测

扫码查看
实现实时印刷电路板(Printed Circuit Board,PCB)表面缺陷检测是提高PCB制作工艺流程智能化的基础,针对原始PCB检测方法耗时长、精度低、不易移动的问题,提出了一种基于YOLOv7-tiny的改进模型.将YOLOv7-tiny中的SiLU激活函数替换为ELU函数,引入集中综合卷积模块(C3模块),将深度可分离卷积与C3相结合,构成集中综合深度可分离模块,并添加卷积块注意模块.经实验,改进后的模型在检测准确性、召回率以及均值平均精度上都表现出色,相较于原模型大小下降了2.8 MB.与其他主流的目标检测方案对比,也表现出较好的检测效果.改进后的YOLOv7-tiny能够保持更高的准确性,同时还减少了模型的内存需求,这为PCB缺陷的实时检测以及边缘部署提供了新的可能性.
PCB Surface Defect Detection Based on Improved YOLOv7-tiny
Realizing real-time printed circuit board(PCB)surface defect detection is the basis for improving the intelligence of the PCB fabrication process.Aiming at the original PCB inspection method which is time-consuming,low-accuracy and not easy to move,this paper proposes an improved model based on YOLOv7-tiny.Replace the SiLU activation function in YOLOv7-tiny with the ELU function;introduce a centralized integrated convolutional module(C3 module),and combine depthwise separable convolution with C3 to form a centralized integrated depthwise separable convolution module;and add a convolutional block attention module.Experimentally,the improved model performs well in detection accuracy,recall rate,and mean average precision,and the size of the model drops by 2.8 MB compared to the original model.It also shows better detection results when compared with other mainstream target detection schemes.The ability of the improved YOLOv7-tiny to maintain higher accuracy while also reducing the memory requirements of the model opens up new possibilities for real-time detection of PCB defects as well as edge deployment.

target detectionYOLOv7-tinyactivation functioncentralized comprehensive depth sepa-rable moduleattention mechanism

解琳、韩跃平、翟倩、李瑞红

展开 >

中北大学 信息与通信工程学院,山西 太原 030051

中北大学 软件学院,山西 太原 030051

目标检测 YOLOv7-tiny 激活函数 集中综合深度可分离模块 注意力机制

2025

测试技术学报
中国兵工学会

测试技术学报

影响因子:0.305
ISSN:1671-7449
年,卷(期):2025.39(1)