首页|基于快速温度调制的气体传感器选择性提高方法

基于快速温度调制的气体传感器选择性提高方法

扫码查看
针对金属氧化物半导体气体传感器低选择性和交叉敏感的难题,采用快速温度调制方法构建基于单个MEMS气体传感器的虚拟阵列,在提高选择性的同时解决传感器阵列的高功耗和高成本问题.通过快速动态温度调制获得气体的高频响应信号,研究调制信号的处理及特征提取方法,并优化了调制参数;采用支持向量机构建分类模型,并结合支持向量回归、随机森林回归、反向传播神经网络构建浓度估计模型,实现了对H2、H2S、NH3和C2H5OH 4种气体的定性和定量分析,分类准确率达100%,浓度预测误差分别为19.5×10-6、3.7×10-6、0.2×10-6、19×10-6.本研究提高单个气体传感器选择性的同时降低了使用功耗,为环境监测和工业生产等领域的现场检测提供了新的解决方案.
Improving Selectivity of Gas Sensor Based on Rapid Temperature Modulation
To address the poor selectivity and cross-sensitivity of metal-oxide-semiconductor sensors,a fast temperature modulation method was used with an individual MEMS gas sensor to construct a virtual sensor array,which has lower power consumption and cost.First,the response signals to different gases were obtained under pulse temperature modulation and the modulation parameters were optimized.Then,a Support Vector Machine was employed to identify the types of different gases,and Support Vector Regression,Random Forest Regression,and Back-propagation neural network algorithms were employed to estimate the concentration of each gas.The results show that all four gases,H2,H2S,NH3 and C2H5OH,were correctly classified with concentration prediction errors of 19.5×10-6,3.7×10-6,0.2×10-6 and 19×10-6,respectively.This method improves the selectivity of individual gas sensors while reducing power consumption,providing ideas and solutions for on-site detection such as environmental monitoring and industrial production.

gas sensorselectivitytemperature modulationpattern recognition

林凯滨、林建华、贾建、高晓光、何秀丽

展开 >

中国科学院空天信息创新研究院 传感技术国家重点实验室,北京 100190

中国科学院大学 电子电气与通信工程学院,北京 100049

气体传感器 选择性 温度调制 模式识别

2025

测试技术学报
中国兵工学会

测试技术学报

影响因子:0.305
ISSN:1671-7449
年,卷(期):2025.39(1)