首页|基于改进FastICA和多特征融合的10kV断路器机械故障声纹诊断方法

基于改进FastICA和多特征融合的10kV断路器机械故障声纹诊断方法

扫码查看
针对基于声纹特征的10 kV断路器机械故障模型易受环境噪声影响,识别准确率低,识别时间过长的问题,提出了一种基于改进FastICA和Bi-LSTM多特征混合的10 kV断路器机械故障声纹诊断方法.首先,采用皮尔逊系数对FastICA算法进行改进,利用改进的FastICA算法对采集的声音进行噪声分离,提取纯净的10 kV断路器状态声纹信号;然后,通过傅里叶变换分析10 kV断路器各种状态下频域信息,依据分析结果选取合适的时域、频域、声学特征,并通过差异度分析,选取贡献度大的特征构成一维混合特征;最后,将混合特征作为诊断依据,建立基于Bi-LSTM的故障分类模型.结果表明,该方法能够有效识别出10 kV断路器常见的8种机械故障和正常分合闸,识别准确率可达99.3%,满足电网对电气设备故障诊断的准确性要求.
A Voiceprint Diagnosis Method for Mechanical Faults of 10kV Circuit Breakers Based on Improved FastICA and Multi-Feature Fusion
The mechanical fault model of 10 kV circuit breakers based on voiceprint features is susceptible to environmental noise,resulting in low recognition accuracy and long recognition time.This article proposes a multi-feature hybrid voiceprint diagnosis method for mechanical faults of 10 kV circuit breakers based on improved FastICA and Bi-LSTM.Firstly,the FastICA algorithm is improved by using Pearson coefficients.The collected sound is separated by noise using the improved FastICA algorithm,and pure 10 kV circuit breaker state voiceprint signals are extracted.Then,the Fourier transform is used to analyze the frequency domain information of the 10 kV circuit breaker in various states.Based on the analysis results,appropriate time-domain,frequency-domain,and acoustic features are selected,and through difference analysis,features with high contribution are selected to form one-dimensional mixed features.Finally,using mixed features as diagnostic criteria,a fault classification model based on Bi-LSTM is established.The results indicate that this method can effectively identify eight common mechanical faults in 10 kV circuit breakers.The recognition accuracy can reach 99.3%,meeting the accuracy and speed requirements of the power grid for electrical equipment fault diagnosis.

10 kV circuit breakermechanical fault diagnosisvoiceprint recognitionnoise separationBi-LSTM

单光瑞、段梵、李先允、陈兰杭

展开 >

国网镇江供电公司,江苏 镇江 212003

南京工程学院 电力工程学院,江苏 南京 211167

10kV断路器 机械故障诊断 声纹识别 噪声分离 双层长短期神经网络(Bi-LSTM)

2025

测试技术学报
中国兵工学会

测试技术学报

影响因子:0.305
ISSN:1671-7449
年,卷(期):2025.39(1)