首页|单相流雾化喷嘴喷雾噪声特性实验研究

单相流雾化喷嘴喷雾噪声特性实验研究

扫码查看
喷雾效果与喷雾噪声之间常呈现相互制约的关系,使得较好的喷雾效果往往伴随着较高的噪声水平,二者难以同时实现优化.因此,本文通过搭建喷雾噪声诊断系统实验台,分析单相流喷雾远场噪声特性及其发生机理,研究监测角度、喷雾流量与喷口直径对单相流喷雾噪声特性的影响规律.结果表明:单相流喷雾噪声总声压级随流量提高而增大,并沿轴线向下游辐射;监测角度、喷雾流量和喷口直径均影响噪声频谱特性,其中大于4 kHz频带的噪声各个波峰峰值随着监测角度的提高而逐渐消失;而随着喷雾流量的提高,小于315 Hz的低频噪声逐渐减小,但高频噪声却随之增大;喷口直径的减小使喷雾噪声在2.8、4.5、6.3 kHz处出现明显且稳定的波峰.本文对喷雾噪声的产生机制与辐射特性的深入研究,对预测和控制喷雾噪声在实践中的影响具有至关重要的现实意义与理论价值.
Experimental study on spray noise characteristics of single-phase flow atomizer
The spray effect and spray noise often exhibit a mutually restrictive relationship,making it difficult to opti-mize both simultaneously while achieving good spray performance is often accompanied by high noise levels.To address this,a spray noise diagnostic system experimental platform was established to analyze the far-field noise characteristics and occurrence mechanisms of single-phase spray.The study investigated the influence of monitoring angle,spray flow rate,and nozzle diameter on the noise characteristics of single-phase spray.The results revealed that the total sound pres-sure level of single-phase spray noise increases with flow rate and radiates downstream along the axis.Monitoring angle,spray flow rate,and nozzle diameter all affect the noise spectrum characteristics,with noise peaks above 4 kHz gradually disappearing as the monitoring angle increases.Additionally,as the spray flow rate increases,low-frequency noise below 315 Hz gradually decreases,while high-frequency noise increases.A reduction in nozzle diameter leads to distinct and stable noise peaks at 2.8,4.5 and 6.3 kHz.This in-depth study of the generation mechanism and radiation characteristics of spray noise holds significant practical and theoretical value for predicting and controlling its impact in real-world ap-plications.

single-phase flow sprayspray noisesound pressure levelspectrum analysisnoise radiation

刘联胜、霍鑫鹏、解珺

展开 >

河北工业大学 能源与环境工程学院,天津 300401

单相流喷雾 喷雾噪声 声压级 频谱分析 噪声辐射

2024

河北工业大学学报
河北工业大学

河北工业大学学报

CSTPCD
影响因子:0.344
ISSN:1007-2373
年,卷(期):2024.53(6)