首页|基于机器学习的妊娠期糖尿病智能预测系统设计与实现

基于机器学习的妊娠期糖尿病智能预测系统设计与实现

扫码查看
为帮助有效识别患有妊娠期糖尿病的孕妇,提前干预治疗,降低其潜在风险,设计并开发了妊娠期糖尿病智能预测系统.首先,在对比10种机器学习模型的基础上对临床数据集进行数据归一化和特征筛选,减少模型计算复杂度和一些使模型不稳定的特征;其次,使用Stacking算法对10种不同的机器学习模型进行集成,分别搭建2个集成模型Stacking1和Stacking2,比较集成模型的性能;最后,基于PyQt5设计妊娠期糖尿病智能预测系统,预测孕妇患妊娠期糖尿病的风险,并给出建议.结果表明:使用10个机器学习模型以及2个集成模型对GDM 进行预测,发现GBDT的预测结果高于其他机器学习模型,集成模型 Stacking2将多个异质学习器相结合表现出较高的准确性和可靠性,且评价指标Accuracy、Precision、Recall、AUC分别为0.900 9、0.901 2、0.900 7、0.900 7,均高于同类模型.智能预测系统能有效预测妊娠期糖尿病的风险,能够及早发现易患病人群,并提供妊娠期糖尿病的科普知识,从而加强对易患病人群的健康管理,降低妊娠期糖尿病发生的风险.
Design and implementation of gestational diabetes mellitus intelligent prediction system based on machine learning
To help to effectively identify pregnant women with gestational diabetes mellitus(GDM),intervene in advance for treatment,and reduce potential risks,a GDM intelligent prediction system was designed and developed.Firstly,based on the comparison of 10 machine learning models,data normalization and feature selection were conducted on the clinical dataset based on these models to reduce model computational complexity and unstable features.Secondly,the Stacking algorithm was used to integrate 10 different machine learning models,and two integrated models,Stacking1 and Stacking2,were built to compare their performance.Finally,based on PyQt5,a GDM intelligent prediction system was designed to predict the risk of GDM in pregnant women and provide suggestions.The results show that using 10 machine learning models and two integrated models to predict GDM,it is found that the prediction results of GBDT are higher than other machine learning models.The integrated model Stacking2,combining multiple heterogeneous learners,exhibits high accuracy and reliability,with evaluation indicators of Accuracy,Precision,Recall,and AUC of 0.900 9,0.901 2,0.900 7,and 0.900 7,respectively,all higher than similar models.The intelligent prediction system can effectively predict the risk of GDM,identify susceptible individuals early,and provide popular science knowledge of GDM,thereby strengthen the health management of susceptible individuals and reduce the risk of GDM occurrence.

computer decision support systemmachine learningPyQt5integrated learninggestational diabetes mellitusfeature selection

马金龙、徐立魏、杨志芬、王胜普、郑芮、张永强

展开 >

河北科技大学信息科学与工程学院,河北石家庄,050018

河北医科大学第四医院产科,河北石家庄, 050035

计算机决策支持系统 机器学习 PyQt5 集成学习 妊娠期糖尿病 特征筛选

河北省自然科学基金河北省医学科学研究项目河北省医学科学研究项目河北省医学科学研究项目

H2022206212202307752023077620210715

2024

河北工业科技
河北科技大学

河北工业科技

CSTPCD
影响因子:0.694
ISSN:1008-1534
年,卷(期):2024.41(2)
  • 24