首页|基于多路卷积聚合的动作识别

基于多路卷积聚合的动作识别

扫码查看
为解决视频数据中不同的动作行为时序长短不一,输入的视频帧序列长度固定而导致不同时序特征被忽略的问题,提出了基于多路卷积网络聚合深度学习模型的动作识别方法.网络以不同序列长度和模态的图像作为输入源,构成三条支路,采用多路分支逐层捕捉不同尺度的特征信息,在网路的最后对特征进行聚合并利用softmax分类器对识别结果进行分类.实验结果表明,该模型在UCF101数据集上准确率达到了88.36%,均优于对比实验模型,有效地提高了识别精度,具有一定的竞争力.
Action recognition based on multi-channel convolutional aggregation
In order to solve the problem of different action sequences in video data with varying lengths and fixed input video frame sequences,which leads to the neglect of different temporal features,an action recognition method based on a multi convolutional network aggregation deep learning model is proposed.The network uses images of different sequence lengths and modalities as input sources,consisting of three branches.Multiple branches are used to capture feature information at different scales layer by layer.At the end of the network,the features are aggregated and the rec-ognition results are classified using a softmax classifier.The experimental results show that the accuracy of this model on the UCF101 dataset reaches 88.36%,which is better than the compara-tive experimental model and effectively improves the recognition accuracy,with a certain degree of competitiveness.

deep learningaction recognitionfeature aggregationresidual structuresequence charac-teristics

张君秋、赵建光

展开 >

河北建筑工程学院,河北张家口 075000

深度学习 动作识别 特征聚合 残差结构 序列特征

河北建筑工程学院硕士研究生创新基金

XY202237

2024

河北建筑工程学院学报
河北建筑工程学院

河北建筑工程学院学报

影响因子:0.502
ISSN:1008-4185
年,卷(期):2024.42(1)
  • 18