首页|基于U2NET的边缘检测研究

基于U2NET的边缘检测研究

扫码查看
边缘检测在计算机视觉领域中扮演着重要角色,其可用于目标检测、图像分割等任务.U2NET是一种基于U-Net的深度学习模型,通过分层次的特征提取和上下文感知的特征融合来实现高精度的图像分割.针对U2NET在边缘检测中的应用进行研究,发现传统卷积核对在卷积过程中对梯度信息不敏感的问题,传统的卷积块进行卷积时,内核优化是随机初始化的,对梯度信息没有显示编码,这导致了它很难专注于边缘相关的特征,而差分卷积是将卷积核覆盖的局部特征patch内的原始像素替换为像素差,将有用的像素关系进行编码,将其保留在训练过程中的卷积核内,这样就能克服传统CNN对捕获梯度信息不敏感的问题.并且在自制数据集和BSDS500公共数据集进行实验验证,证明了差分卷积U2NET在边缘检测任务上的优越性能.研究结果表明,基于差分卷积的U2NET是一种可以实现抠图和边缘检测的高效模型,可应用于各种实际场景中.
Research on Edge Detection of U2NET Based on Differential Convolution
Edge detection plays an important role in the field of computer vision,which can be used in target detection,image segmentation and other tasks.U2NET is a deep learning model based on U-Net,which realizes high precision image segmentation through hierarchical feature extraction and context-aware feature fusion.This paper studies the application of U2NET in edge detection,and finds that the traditional convolution check is insensitive to gradient information in the convo-lution process.When the traditional convolution block is convolution,kernel optimization is ran-domly initialized,and the gradient information is not displayed and encoded,which makes it diffi-cult for it to focus on edge related features.Differential convolution replaces the original pixels in the local feature patch covered by the convolution kernel with pixel differences,encodes the useful pixel relations,and retains them in the convolution kernel during the training process.In this way,the problem that traditional CNN is not sensitive to capturing gradient information can be over-come.The results of experiments on self-made data sets and BSDS500 public data sets demon-strate the superior performance of differential convolution U2NET in edge detection tasks.In summary,the results of this paper show that the differential convolution based U2NET is an effi-cient model for matting and edge detection,which can be applied to various practical scenarios.

U2NETEdge detectionDeep learningDifferential convolution

杨洪成、岳杰、赵明瞻、张大伟

展开 >

河北建筑工程学院,河北张家口 075000

U2NET 边缘检测 深度学习 差分卷积

2024

河北建筑工程学院学报
河北建筑工程学院

河北建筑工程学院学报

影响因子:0.502
ISSN:1008-4185
年,卷(期):2024.42(2)