首页|基于图卷积网络和图数据增强技术的节点分类研究

基于图卷积网络和图数据增强技术的节点分类研究

扫码查看
在图卷积网络中,节点分类是一个基本问题,它涉及到图中节点的标签预测.然而,由于真实世界中的图往往具有复杂的结构和噪声,节点分类准确率往往不尽如人意.为了解决这个问题,提出了一种使用图神经网络和图数据增强技术的方法来提高节点分类准确率.首先,我们使用图数据增强技术对图数据进行预处理,对原始训练数据进行变换和扩展来生成更多训练样本,以此来提高模型的泛化性和鲁棒性,然后用图卷积网络模型对图数据进行节点分类,最后,在Cora数据集上进行了多次对比实验.实验结果表明,使用图卷积网络和图数据增强技术可以显著提高节点分类准确率,Cora数据集上的节点分类准确率从82.6%提高到了84.0%.
Research on Node Classification Based on Graph Convolutional Network and Graph Data Enhancement Technology
In graph convolutional networks,node classification is a basic problem,which involves label prediction of nodes in graphs.However,because graphs in the real world often have complex structures and noise,the accuracy of node classification is often unsatisfactory.In order to solve this problem,this paper proposes a method using graph neural network and graph data enhance-ment technology to improve the accuracy of node classification.First,we use graph data enhance-ment technology to preprocess the graph data,transform and extend the original training data to generate more training samples,so as to improve the generalization and robustness of the model.Then,we use the graph convolutional network model to classify the graph data nodes.Finally,we conduct several comparison experiments on the Cora data set.The experimental results show that using convolutional network and graph data enhancement technology can significantly improve the accuracy of node classification,and the accuracy of node classification on Cora data set is improved from 82.6%to 84.0%.

Graph convolutional networkGraph data enhancementNode classificationAccuracy rate

司亚超、刘子奇、赵明瞻

展开 >

河北建筑工程学院,河北张家口 075000

图卷积网络 图数据增强 节点分类 准确率

2024

河北建筑工程学院学报
河北建筑工程学院

河北建筑工程学院学报

影响因子:0.502
ISSN:1008-4185
年,卷(期):2024.42(2)