首页|基于改进遗传算法的钢筋混凝土框架优化设计

基于改进遗传算法的钢筋混凝土框架优化设计

扫码查看
为改善标准遗传算法(SGA)在离散变量结构优化设计中的早熟问题,提出一种新自适应交叉、变异算子,并结合罚函数改进措施,以改善SGA的不足.自适应改进措施通过迭代数和个体优秀程度进行共同把控,做到前期有较大交叉概率,丰富种群,后期有较大变异概率,增进局部寻优,并通过正交试验测试得出改进 SGA最优的控制参数.采用改进 SGA对不同的钢筋混凝土框架结构算例进行验证,结果表明:改进 SGA 的计算结果比传统设计方法、SGA、拟满内力算法更优,说明了改进 SGA的适用性和有效性.从整体结果分析可知,改进SGA可以更好的发挥其自身的全局优化性能,可解决多工况、多单元的钢筋混凝土框架结构优化问题,是一种较为高效的方法.
Optimization design of reinforced concrete frame based on improved genetic algorithm
To solve the prematurity problem of standard genetic algorithm(SGA)in structural optimiza-tion design with discrete variables,a new adaptive crossover and mutation operator was proposed,com-bined with the penalty function improvement measures,to solve the shortcomings of SGA.The adap-tive improvement measures are jointly controlled by the number of iterations and individual excellence degree,so as to achieve a large crossover probability and enrich the population in the early stage and a large mutation probability in the late stage to enhance local optimization,and the optimal control pa-rameters of the improved SGA are obtained through the orthogonal test.The improved SGA is used to verify different reinforced concrete frame structures,and the results show that the calculation results of the improved SGA are more excellent than those of the traditional design method,SGA and pseudo-full internal force algorithm,respectively.This shows the applicability and effectiveness of improving SGA.From the analysis of the overall results,it can be seen that the improved SGA can give better play to its own global optimization performance,and can solve the optimization problem of reinforced concrete frame structure with multiple working conditions and multiple units,which is a relatively effi-cient method.

improve SGAadaptivecrossmutationstructural optimization

谢军、林书钦、陈月尧、阎杰

展开 >

河北建筑工程学院,河北 张家口 075000

河北省土木工程诊断、改造与抗灾实验室,河北 张家口 075000

河北省寒冷地区交通基础设施工程技术创新中心,河北 张家口 075000

改进SGA 自适应 交叉 变异 结构优化

2024

河北建筑工程学院学报
河北建筑工程学院

河北建筑工程学院学报

影响因子:0.502
ISSN:1008-4185
年,卷(期):2024.42(3)