首页|基于改进模拟退火遗传算法的路径规划问题研究

基于改进模拟退火遗传算法的路径规划问题研究

扫码查看
为了解决复杂环境中的路径规划问题,通过引入并改进模拟退火算法与遗传算法相结合的混合优化策略,以克服传统路径规划算法在全局搜索能力、收敛速度及避免局部最优解方面的局限性,提出了一种基于改进模拟退火遗传算法的路径规划方法.在遗传算法框架内,通过编码方式表示路径,并利用选择、交叉和变异等遗传操作生成新的路径种群.为增强全局搜索能力和跳出局部最优解的能力,引入了模拟退火机制,在遗传算法的交叉和变异操作中融入模拟退火的概率接受准则,允许以一定概率接受较差的解,从而增加种群的多样性.研究过程中,首先设计并实现了改进的模拟退火遗传算法,并设置了对比实验,包括单独使用遗传算法、模拟退火算法以及模拟退火遗传算法进行对比分析.实验结果表明,与单独使用遗传算法和模拟退火算法相比,改进模拟退火遗传算法在复杂环境中的路径规划问题上展现出了显著的优势,有效提升了算法的全局搜索能力、最优解准确度和收敛速度,同时增强了算法对复杂环境的适应能力.
Research on path planning problem based on improved simulated annealing genetic algorithm
This paper aims to solve the path planning problem in complex environment,and to overcome the limitations of traditional path planning algorithms in terms of global search ability,conver-gence speed and avoidance of local optimal solutions by introducing and improving the hybrid opti-mization strategy combining simulated annealing algorithm and genetic algorithm.In this paper,we propose a path planning method based on an improved simulated annealing genetic algorithm,in which the path is represented by coding within the framework of the genetic algorithm,and a new path population is generated by genetic operations such as selection,crossover,and mutation.In order to enhance the global search ability and the ability to jump out of the local optimal solu-tion,this paper introduces the simulated annealing mechanism,and integrates the probability ac-ceptance criterion of simulated annealing into the crossover and mutation operations of the genetic algorithm,so as to allow the poor solution to be accepted with a certain probability,so as to in-crease the diversity of the population.In the process of research,an improved genetic algorithm for simulated annealing was designed and implemented,and comparative experiments were set up,in-cluding the genetic algorithm alone,the simulated annealing algorithm and the simulated annealing genetic algorithm for comparative analysis.Experimental results show that compared with the ge-netic algorithm and simulated annealing algorithm alone,the improved simulated annealing genetic algorithm proposed in this paper shows significant advantages in path planning in complex envi-ronments,effectively improves the global search ability,optimal solution accuracy and convergence speed of the algorithm,and enhances the adaptability of the algorithm to complex environments.

simulated annealing genetic algorithmOptimization designPath planning

张天顺、王剑雄、刘平

展开 >

河北建筑工程学院,河北 张家口 075000

辽宁省铁岭市昌图县第一高级中学,辽宁 铁岭 112500

模拟退火遗传算法 优化设计 路径规划

2024

河北建筑工程学院学报
河北建筑工程学院

河北建筑工程学院学报

影响因子:0.502
ISSN:1008-4185
年,卷(期):2024.42(3)