首页|基于YOLOv8改进的安全帽佩戴检测算法研究

基于YOLOv8改进的安全帽佩戴检测算法研究

扫码查看
安全帽的佩戴对建筑工地和工厂的工人来说至关重要,佩戴安全帽是施工场地的重要防护措施.如何有效地监测和确保安全帽的佩戴一直是企业监管的一大挑战.基于这一问题,在YOLOv8 算法的基础上,通过改进YOLOv8 网络的主干网络和头部网络来提高检测精度.实验结果表明,改进的算法检测准确率可达 74.4%,与 YOLOv8 相比提升了 0.4 个百分点.这个改进对于提高安全帽检测的准确性具有重要意义.
Research on improved helmet wear detection algorithm based on YOLOv8
Wearing a safety helmet is crucial for construction site and factory workers.Wearing a safety helmet is an important protective measure at the construction site.How to effectively monitor and ensure the wearing of safety helmets has always been a major challenge for corporate supervision.First,this paper improves the detection accuracy based on the YOLO v8 algorithm by replacing the backbone network and head network of the YOLOv8 network.Experimental results show that the detection accuracy of the improved algorithm reaches 74.4%,Compared to YOLOv8,there has been an improvement of 0.4 percentage points.This improvement is used to improve the accuracy of helmet detection and is of great significance meaning.

Deep LearningTarget DetectionHelmet DetectionYOLOv8

任海、王涛、贾利云

展开 >

河北建筑工程学院,河北 张家口 075000

深度学习 目标检测 安全帽检测 YOLOv8

2024

河北建筑工程学院学报
河北建筑工程学院

河北建筑工程学院学报

影响因子:0.502
ISSN:1008-4185
年,卷(期):2024.42(3)