首页|基于模糊逻辑的FBiLSTM-Attention短期负荷预测

基于模糊逻辑的FBiLSTM-Attention短期负荷预测

扫码查看
针对电力负荷数据由于受多种因素的影响具有高度不确定性的问题,将负荷数据的不确定性与深度学习算法相结合,提出了一种基于模糊逻辑的FBiLSTM-Attention短期负荷预测模型,以提高负荷预测的精度.首先,对原始数据进行数据预处理,包括缺失值填充、相关性分析及数据归一化;其次,通过K-Means聚类将每个特征的数据转换成模糊规则引入模糊逻辑的处理,同时,模型结构方面采用双向长短期记忆网络(BiLSTM)和注意力机制(Attention);最后,对所提方法和传统的LSTM与BiLSTM-Attention模型的预测结果进行对比.结果表明,结合了模糊逻辑的模型精确度和鲁棒性都有了明显的提升,具有更好的预测性能.所提模型可以有效提高处理不确定性数据的能力,为负荷预测研究提供了参考.
FBiLSTM-Attention short-term load forecasting based on fuzzy logic
Aiming at the problem of high uncertainty in power load data due to various factors,a fuzzy logic based FBiLSTM Attention short-term load forecasting model was proposed by combining the uncertainty of load data with deep learning algorithms to improve the accuracy of load forecasting.Firstly,the raw data,including filling in missing values,conducting correlation analysis and normalizing the data,was preprocessed.Secondly,K-Means clustering was used to transform the data of each feature into fuzzy rules and introduce fuzzy logic processing.In terms of model structure,a bi-directional long short-term memory(BiLSTM)and attention mechanism(Attention)were adopted.Finally,the prediction results of the proposed method with traditional LSTM and BiLSTM Attention models were compared.The results show that the model combined with fuzzy logic has significantly improved accuracy and robustness,and has better predictive performance.The proposed model can effectively improve the ability to handle uncertain data,providing reference for load forecasting study.

data processingfuzzy logicload forecastingbi-directional long short-term memory(BiLSTM)attention mechanism(Attention)

张岩、康泽鹏、高晓芝、杨楠、王昭雷

展开 >

河北科技大学电气工程学院,河北 石家庄 050018

三峡大学电气与新能源学院,湖北 宜昌 443002

国网河北省电力有限公司超高压分公司,河北 石家庄 050070

数据处理 模糊逻辑 负荷预测 双向长短期记忆网络 注意力机制

2025

河北科技大学学报
河北科技大学

河北科技大学学报

北大核心
影响因子:0.959
ISSN:1008-1542
年,卷(期):2025.46(1)