首页|基于中间态的网络安全机器翻译模型

基于中间态的网络安全机器翻译模型

扫码查看
针对网络安全领域的中译英机器翻译存在大量专业术语,数据规模小以及不同语言的句法结构存在差异等问题,提出了一种基于中间态的网络安全机器翻译模型.通过研究中英句法结构上的差异,制定将中文转换为中间态的规则.结合BERT与SpaCy生成包含语义嵌入的中间态词向量,利用BERT捕捉句子的上下文语义信息,通过SpaCy解析依存关系,将两者整合为高维特征向量.实验结果表明,所提出的翻译模型在低资源网络安全双语数据集BLEU值达到了 28.2,提升了 1.0 个BLEU值,WMT18 公开中英双语数据集BLEU值达到了 21.1,提升了 0.9 个BLEU值.可见通过中间态以及捕捉上下文语义信息和句法结构信息,模型能够更准确地处理专业术语、复杂句法等问题.
A Network Security Machine Translation Model Based on Intermediate State
Aiming at the problems of Chinese-to-English machine translation in the field of network security,such as the existence of a large number of jargons,the small size of the data and the great differences in the syntactic structure of different languages,a middle-state-based machine translation model for network security was proposed.By studying the differences in the syntactic structure of Chinese and English,the rules of Chinese conversion intermediate state were defined,BERT and SpaCy were combined for generating word vectors containing semantic embeddings in intermediate state,BERT was used to capture the contextual semantic information of sentences,and the dependencies were resolved by SpaCy,and the two were integrated into a high-dimensional feature vector.The experimental results show that the proposed translation model,based on the Transformer translation model,achieves a BLEU value of 27.0 for the low-resource cybersecurity bilingual dataset,which is an improvement of 1.0,and a BLEU value of 21.3 for the WMT18 public bilingual dataset,which is an improvement of 0.7 BLEU values.It can be seen that through intermediate states as well as capturing contextual semantic information and syntactic structure information,the model is able to deal with technical terms,complex syntax and other problems more accurately.

network securitymachine translationdependency analysistransformer model

韩睿、于复兴、董海琳、韩阳

展开 >

华北理工大学 人工智能学院,河北 唐山 063210

河北省工业智能感知重点实验室,河北 唐山 063210

华北理工大学 外国语学院,河北 唐山 063210

华北理工大学 理学院,河北 唐山 063210

展开 >

网络安全 机器翻译 依存分析 Transformer模型

2025

华北理工大学学报(自然科学版)
河北联合大学

华北理工大学学报(自然科学版)

影响因子:0.3
ISSN:2095-2716
年,卷(期):2025.47(1)