首页|弹性网络正则化的高维序列因果关联识别研究

弹性网络正则化的高维序列因果关联识别研究

扫码查看
弹性网络正则化方法兼顾了L1 正则化与L2 正则化的优点,能够解决高维时间序列因果关系分析中共线性、过度拟合与信息冗余等问题,有效发掘高维序列之间的主要关联关系.首先,基于VAR模型与长期格兰杰因果关联网络,阐述高维序列因果关联识别的方法;其次,讨论了弹性网络正则化如何解决高维序列因果关系建模的弊端,融合L1与L2正则化的主要特点;最后,结合多维大宗商品期货价格日度波动率序列,探索了弹性网络正则化在高维序列因果关联识别的应用,并与其他正则化方法进行比较.结果表明,弹性网络正则化方法避免了信息冗余与"过度稀疏化"的问题,识别与提炼商品价格波动因果关联网络中的主要影响节点与传导关系,挖掘序列关系网络中的主要因果关联.
Research on Identifying Causal Relationships in High-dimensional Sequences Based on Elastic Network Regularization
The Elastic Net regularization method combines the advantages of both L1 and L2 regularization,effectively addressing issues such as collinearity,overfitting,and information redundancy in the analysis of causality in high-dimensional time series.It efficiently uncovers the primary correlations among high-dimensional sequences.First,the methodology for identifying causal relationships in high-dimensional sequences was elaborated based on the VAR(Vector Autoregression)model and the long-term Granger causality network.Second,how Elastic Net regularization addresses the shortcomings of causal modeling for high-dimensional sequences by incorporating the key features of both L1 and L2 regularization was discussed.Lastly,the application of Elastic Net regularization in identifying causal relationships among high-dimensional sequences was explored using daily volatility sequences of multi-dimensional commodity futures prices,and compared with other regularization methods.The results demonstrate that the Elastic Net regularization method avoids issues of information redundancy and"excessive sparsity,"identifying and refining the primary influential nodes and transmission relationships within the causal network of commodity price fluctuations,thereby uncovering the major causal associations within the sequence relationship network.

elastic netregularizationhigh-dimensional sequenceLong-run Granger Causality Network(LGCN)

张居营、安风楼

展开 >

河北金融学院 金融与投资学院,河北 保定 071051

太平洋证券股份有限公司,北京 100033

弹性网络 正则化 高维序列 长期格兰杰因果关联网络

2025

华北理工大学学报(自然科学版)
河北联合大学

华北理工大学学报(自然科学版)

影响因子:0.3
ISSN:2095-2716
年,卷(期):2025.47(1)